首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Composite films of polyaniline (PANI) and carbon nanotubes (CNTs) were prepared by electrochemical co-deposition from solutions of the corresponding monomer containing two different kinds of CNTs. The first type was commercial (diameter = 110–170 nm, length = 5–9 μm) and the second one was home-made (diameter = 30 nm, length = 5–20 μm). The electrochemical behaviour of PANI–CNTs composite films was investigated with Cyclic Voltammetry and the surface morphology was analysed by Scanning Electron Microscopy (SEM). Subtractively Normalised Interfacial FT-IR procedure was used to investigate the presence of corrosion products when the films were deposited on stainless steel substrates and exposed to acid environment. The spectral investigations were utilised to understand the role of composite films in the corrosion protection and to discriminate the best performance CNTs.  相似文献   

2.
The inhibitory effect of tannins was investigated using, among others, potentiodynamic polarizations and Mössbauer spectroscopy. These techniques confirmed that the nature, pH and concentration of tannic solution are of upmost importance in the inhibitory properties of the solutions. It is observed that at low tannin concentration or pH, both, hydrolizable and condensed tannins, effectively inhibit iron corrosion, due to the redox properties of tannins. At pH ?? 0, Mössbauer spectra of the frozen aqueous solutions of iron(III) with the tannin solutions showed that iron is in the form of a monomeric species [Fe(H2O)6]3?+?, without coordination with the functional hydroxyl groups of the tannins. The suspended material consisted of amorphous ferric oxide and oxyhydroxides, though with quebracho tannin partly resulted in complex formation and in an iron (II) species from a redox process. Other tannins, such as chestnut hydrolysable tannins, do not complex iron at this low pH. Tannins react at high concentrations or pH (3 and 5) to form insoluble blue?Cblack amorphous complexes of mono-and bis-type tannate complexes, with a relative amount of the bis-ferric tannate generally increasing with pH. Some Fe2?+? in the form of hydrated polymeric ferrous tannate could be obtained. At pH 7, a partially hydrolyzed ferric tannate complex was also formed. The latter two phases do not provide corrosion protection. Tannin solutions at natural pH react with electrodeposited iron films (approx. 6 ??m) to obtain products consisting only on the catecholate mono-complex of ferric tannate. Some aspects of the mechanism of tannins protection against corrosion are discussed.  相似文献   

3.
We have presented theoretical and experimental investigations of nanosecond (ns) deep-ultraviolet (DUV) 177.3 nm radiation by means of second harmonic generation (SHG) from a frequency-tripled Nd:YAG laser (355 nm, 49 ns and 10 kHz) in KBe2BO3F2 (KBBF) nonlinear crystal for the first time. A DUV KBBF-SHG numerical model, accounting for linear absorption, pump depletion, beam spatial birefringent walk-off and diffraction, is performed in the Gaussian approximation of spatial and temporal profiles. In the experiment, a maximum average output power of 14.1 mW at 177.3 nm was obtained. The dependence of 177.3 nm output power on the 355 nm pump power was simulated. The calculated results are in good agreement with the measured data. We used the model further to investigate the optical conversion efficiency, pulse width, beam spatial intensity profile and beam quality factor of the generated 177.3 nm light, in particular the effect of beam birefringent walk-off.  相似文献   

4.
In this contribution we present a systematic study on the dispersion of SWCNTs in a water-based solution of biocompatible detergent: sodium deoxycholate (DOC). By avoiding harsh chemical conditions, which are known to damage nanotubes structure, a stable SWCNTs suspension was created. Long term stirring of the solution led to preparation of a stable transparent solution, containing well-dispersed isolated SWCNTs. The as-prepared dispersion remained stable and clear for two months. Optical absorption spectroscopy was employed to measure SWCNTs suspension stability. Nanotube aggregation was evaluated through the tangential mode (G mode) present in the Raman spectrum. High-resolution transmission electron microscopy was employed to observe the mechanism of debundling process.  相似文献   

5.
A new optical method to determine the percentage of unburned carbon particles in fly ash from combustion of pulverized coal has been developed. The technique exploits the different properties of particles of ash and coal in the elastic scattering of polarized light.  相似文献   

6.
Copper (Cu) based metal oxides have high electrocatalytic ability. In this work, we are synthesized stone-like cuprous oxide particles (Cu2O SNPs) covered on acid functionalized graphene oxide (GOS) sheets using ultrasonic process (50 kHz and 100 W). Besides, the chemical structural and crystalline analyses of Cu2O SNPs@GOS composites were characterized by transmission electron microscopy, X-ray crystallography and energy-dispersive X-ray spectroscopy. The Cu2O SNPs@GOS nanomaterials were tested towards detection of 8-hydroxydeoxyguanosine (8-OHdG) in biological samples. As expected Cu2O SNPs@GOS catalyst modified electrodes performed an outstanding catalytic ability on 8-hydroxydeoxyguanosine oxidation. 8-OHdG is oxidative stress biomarker. Further, it is noted that the detection performance of Cu2O SNPs@GOS coated electrodes and it’s highly enhanced due to the synergistic effect of Cu2O SNPs and GOS. Besides, the modified materials provide more electro-active faces and as well as rapid electron transport pathway and shorten diffusion. Moreover, oxidation of 8-OHdG sensor is exploring a long linear or working range of 0.02–1465 µM and high sensitivity (8.75 nM). The viability of the Cu2O SNPs@GOS proposed electrochemical methods have tested, to find out 8-OHdG concentrations in biological fluids (blood serum and urine) with a satisfying recovery ranges.  相似文献   

7.
Using combined excitation emission spectroscopy, we performed a comparative study of europium ions in GaN in samples that have been in situ doped during interrupted growth epitaxy (IGE) or conventional molecular beam epitaxy (MBE) as well as samples that were grown using organometallic vapor phase epitaxy (OMVPE) and subsequently ion implanted with Eu ions. Through site-selective resonant excitation, we are able to unambiguously assign all major observed transitions to a combination of different incorporation sites and electron–phonon coupled transitions. We identified at least nine different incorporation sites of Eu ions in GaN and studied how these sites behave under different excitation conditions and how their relative number is modified by different growth and doping conditions. The coupling to phonons has also been studied for a series of Al x Ga1−x N samples with x=0…1. We find that a main site most resembling an unperturbed Eu ion on Ga site is always dominant, while the minority sites are changing substantially in relative numbers and can occur in some samples fairly close in emission intensity to the main site. In terms of the excitation pathway after the creation of electron-hole pairs, we found three types of centers: (1) sites that are dominantly excited through shallow defect traps; (2) sites that are excited through a deep defect trap; (3) sites that cannot be excited at all including the majority of the main sites. We interpret this finding to indicate that the ion in this environment is not very efficient in trapping excitation and that the indirect excitation involving other traps depends on the ion/trap distance. Many of the main sites are far away from these traps and cannot be excited through this channel at all. The efficiency of excitation is highest for the deep traps, indicating that it would be desirable to enrich the respective site, as has been done with some success in the IGE grown samples.  相似文献   

8.
A series of lactide and ε-caprolactone copolymers containing 4–24 mol % of ε-caprolactone with 20- to 30-kDa molecular weights are synthesized. Based on them, porous materials are produced by foaming in supercritical carbon dioxide. The pore size was shown to decrease with increasing ε-caprolactone content in copolymer, while the porosity of the entire sample was not altered. The resulting pore size also decreases if 7 wt % polyethylene glycol is added to the initial monomer mixture. The Young’s modulus of the porous samples decreases with increasing ε-caprolactone content and when polyethylene glycol is added.  相似文献   

9.
Ablation of bulk metals (Al, Cu) has been investigated in situ by means of high-resolution pump-probe photography using pump laser radiation of pulse duration t p=80 fs, at wavelength of 820 nm. Depending on material-specific parameters, qualitatively different ablation phenomena have been observed. Structural analysis by electron and optical microscopies reveals rosette-like surface structures showing the morphology of the ablated regions. The temporal development of the ablation dynamics can be conditionally categorized into different characteristic time regions. Particularly, laser induced melt injection has been observed in the time range of 700 ns to 1.1 μs after the initial laser-metal interaction.  相似文献   

10.
Nonlinear optical characteristics of single-walled carbon nanotubes (SWCNTs) dispersed in dichlorobenzene and imbedded in polymer were investigated at 800 nm using the time-resolved optical Kerr gate technique. For systematic study of the influence of SWCNT bundling on optical nonlinearities, SWCNT solutions with different concentrations and a series of SWCNT/polymer composites deposited on glass substrates with different concentrations and thicknesses were prepared. The nonlinear response was comparable to the pulse duration of the laser used (~90 fs) both in SWCNT solutions and SWCNT/polymer composites. Over three orders of magnitude enhancement was observed in the third-order nonlinear susceptibility of SWCNT/polymer composite film compared with that of SWCNT solution. An appreciable reduction of microscopic and macroscopic nonlinearities was observed with increasing SWCNT concentrations due to stronger bundling of SWCNTs.  相似文献   

11.
Metallic artefacts of the cultural heritage are often stored in uncontrolled environmental conditions. They are very sensitive to atmospheric corrosion caused by a succession of wet and dry periods due to variations of relative humidity and temperature. To avoid the complete degradation of the metallic artefacts, new preventive strategies must be developed. In this context, we have studied new compounds based on sodium carboxylates solutions CH3(CH2) n−2COO, Na+ hereafter called NaC n . They allow the formation of a passive layer at the metallic surface composed of a metal–carboxylate complex. To understand the action of those inhibitors in the passivation process of iron we have performed electrochemical measurements and surface characterisation. Moreover, to monitor in real time the growth of the coating, in situ X-ray absorption spectroscopy (XAS) experiments at iron K-edge were carried out in an electrochemical cell. These analyses have shown that in the case of NaC10 solution, the protection of iron surface is correlated to the precipitation of a well-organised layer of FeC10. These experiments confirmed that this compound is a fully oxidised trinuclear Fe(III) complex containing decanoate anions as ligands. Such information concerning the passive layer is a key factor to evaluate its stability and finally the long-term efficiency of the protection treatment.  相似文献   

12.
Weathering steels (COR-TEN) were corroded by wet-dry cycles using a splay of various solutions in a laboratory. Corrosion products on weathering steel were characterized by X-ray diffractometry and Mössbauer spectrometry at room and low temperatures. Fine α-FeOOH, γ-FeOOH and γ-Fe 2 O 3 are fundamentally formed in various atmospheric conditions. β-FeOOH is additionally formed under the existence of chloride ions, but not formed when sulfate ions are coexisting. Spraying a NaF solution prevents the progress of corrosion.  相似文献   

13.
The effect of tensile stress on diffusion was studied by the diffusion couple method. A diffusion couple was prepared by electroless plating a nickel thin layer on the round notch surface of a compact tension-type specimen of 20% cold-worked Type 316 stainless steel. The couple was diffused at 450°C for 4003?h under the maximum tensile stress of 553?MPa in the load direction. A rapid diffusion coefficient of nickel in the Type 316 stainless steel was observed at the high tensile stress zone that was 6.5 times faster than that at the low-stress zone.  相似文献   

14.
We consider the hardening characteristics and features of the structural and phase transformations in carbon steel (0.7% C) quenched from the melt using an electron beam with electron energy 130–180 keV, pulse duration 10–200 msec and power density 106 to 107 W/cm2. We have observed that maximum hardening is achieved for pulse duration 40 msec. The nonmonotonic character of the dependence of the degree of hardening on the pulse duration is connected with the substantial effect of the beam parameters on the phase composition and morphology of the rapidly quenched structures.Institute of Power Electronics, Siberian Branch, Russian Academy of Sciences; Tomsk State Architectural Design Academy. Institute of the Physics of Strength and Materials Science, Siberian Branch, Russian Academy of Sciences. Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 10, p. 42–50, October, 1995.  相似文献   

15.
Herein, a facile ultrasonic-assisted strategy was proposed to fabricate the Pd–Pt alloy/multi-walled carbon nanotubes (Pd–Pt/CNTs) nanocomposites. A good number of Pd–Pt alloy nanoparticles with an average of 3.4 ± 0.5 nm were supported on sidewalls of CNTs with uniform distribution. The composition of the Pd–Pt/CNTs nanocomposites could also be easily controlled, which provided a possible approach for the preparation of other architectures with anticipated properties. The Pd–Pt/CNTs nanocomposites were extensively studied by electron microscopy, induced coupled plasma atomic emission spectroscopy, X-ray diffraction, and X-ray photoelectron spectroscopy, and applied for the ethanol and methanol electro-oxidation reaction in alkaline medium. The electrochemical results indicated that the nanocomposites had better electrocatalytic activities and stabilities, showing promising applications for fuel cells.  相似文献   

16.
The characters of stimulated Raman scattering of BaWO4 crystal excited by a picoseconds laser at 1064 nm are studied based on optical parametric amplification (OPA). Up to six-order Stokes components and five-order anti-Stokes components are observed. The SRS components are amplified by an OPA and the wavelength tunable range from 411 to 2594 nm is achieved with a maximum conversion efficiency of 38% using the OPA stage.  相似文献   

17.
18.
Laser ablation of titanium and silicon targets immersed in liquid nitrogen was carried out using a YAG laser at 1.06 μm. Synthesized particles were collected and were characterized by TEM, SEM, EDS, XRD, and XPS. In the case of a titanium target, the synthesized particles had an atomic ratio of N/Ti=0.4 and a polycrystalline structure with many XRD peaks of TiN. This result indicates the usefulness of laser ablation in liquid nitrogen for synthesizing nitrides. On the other hand, in the case of a silicon target, the nitridation of the synthesized particles was negligible, and the synthesized particles had a polycrystalline structure of pure cubic silicon. This means that the oxygen-free environment realized by liquid nitrogen is useful for synthesizing particles with negligible oxidation.  相似文献   

19.
Using a hot-isostatic-pressed boron-doped silicon carbide (SiC) material as an example, we demonstrate that the structural width and the chemical width of general boundaries may be quite different. The high-resolution electron microscopy (HREM) observation did not detect the existence of 1 nm thick amorphous film at such grain boundaries (GB). There is only a core structure of 1–2 atomic planes at GB. The chemical width of GB, obtained by the spatially-resolved electron energy-loss spectroscopy (EELS) analysis, is visibly wider than the core region. Furthermore, the spatially-resolved energy-loss near-edge structures (ELNES) analysis not only revealed the chemical bonding between boron and carbon, oxygen and silicon, but also distinguished an extended GB region with chemical bonding modified from that of the grain interiors. Such ELNES analysis defines an ELNES width that is even wider than the chemical width. The three GB widths of different scale construct a comprehensive picture of general boundaries that is remarkably different from general boundaries with amorphous film. Instead of a film confined by the two atomically sharp grain surfaces, there is only one interface, the rough GB core having most of the B–C and Si–O bonds, and the extended grain surface layers, to form such general GB in B-doped SiC.  相似文献   

20.
Electrochemical impedance spectra (EIS) for lithium ion insertion and extraction in α-MoO3 cathode material were obtained at different potentials during initial discharge–charge cycle. A significant “three semicircles” were obtained at 0.5 V in the Nyquist diagram, and were assigned to lithium ion migration through solid electrolyte interphase (SEI) film, the electronic properties of the material as well as charge transfer step, respectively. An equivalent circuit that includes elements related to the electronic and ionic transport, in addition to the charge transfer process, is proposed to simulate the experimental EIS data. The variations of the resistance of SEI film, the electronic conductivity of the material and the resistance of charge transfer along with the increase and decrease of electrode polarization potential were quantitatively analyzed, and the reasonable explanation is given. Furthermore, the chemical diffusion coefficients of lithium ion in α-MoO3 cathode material were calculated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号