首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The purpose of this study is to explore the advantages and characteristics of nonlinear butyl rubber (type IIR) isolators in vibratory shear by comparison with linear isolators. It is known that the mechanical properties of viscoelastic materials exhibit significant frequency and temperature dependence, and in some cases, nonlinear dynamic behavior as well. Nonlinear characteristics in shear deformation are reflected in mechanical properties such as stiffness and damping. Furthermore, even when the excitation amplitude is small the response amplitude may often be large enough that nonlinearities cannot be ignored. The treatment involves developing phenomenological models of the effective storage modulus and effective loss factor of a rubber isolator material as a function of excitation amplitude. The transmissibility of a nonlinear viscoelastic isolator is compared with that of a linear isolator using an equivalent linear damping coefficient. Forced resonance vibration and impedance tests are used to characterize nonlinear parameters and to measure the normalized transmissibility. It is found that as the excitation amplitude of the nonlinear viscoelastic isolator increases, the response amplitude decreases and the transmissibility is improved over that of the linear isolator for excitation frequency that exceeds a particular value governed by the temperature and excitation amplitude. The method of multiple scales and numerical simulations are used to predict the response characteristics of the isolator based on the phenomenological modeling under different values of system parameters.  相似文献   

2.
This paper investigates a nonlinear inertance mechanism (NIM) for vibration mitigation and evaluates the performance of nonlinear vibration isolators employing such mechanism. The NIM comprises a pair of oblique inerters with one common hinged terminal and the other terminals fixed. The addition of the NIM to a linear spring-damper isolator and to nonlinear quasi-zero-stiffness (QZS) isolators is considered. The harmonic balance method is used to derive the steady-state frequency response relationship and force transmissibility of the isolators subjected to harmonic force excitations. Different performance indices associated with the dynamic displacement response and force transmissibility are employed to evaluate the performance of the resulting isolators. It is found that the frequency response curve of the inerter-based nonlinear isolation system with the NIM and a linear stiffness bends towards the low-frequency range, similar to the characteristics of the Duffing oscillator with softening stiffness. It is shown that the addition of NIM to a QZS isolator enhances vibration isolation performance by providing a wider frequency band of low amplitude response and force transmissibility. These findings provide a better understanding of the functionality of the NIM and assist in better designs of nonlinear passive vibration mitigation systems with inerters.  相似文献   

3.
In this paper describing functions inversion is used and the restoring force of a nonlinear element in a MDOF system is characterized. The describing functions can be obtained using linearized frequency response functions (FRFs). The response of the system to harmonic excitation forces at distinct frequencies close to the resonant frequency results in linearized FRFs. The nonlinear system can be approximated at each excitation frequency by an equivalent linear system. This approximation leads to calculation of the first-order describing functions. By having the experimental describing functions calculated and the system’s responses corresponding to the nonlinear element (measured or interpolated), nonlinear parameter identification can be performed. Two numerical and experimental case studies are provided to show the applicability of this method.  相似文献   

4.
In this paper, the nonlinear vibration of a single-walled carbon nanotube conveying fluid is investigated utilizing a multidimensional Lindstedt–Poincaré method. Considering the geometric large deformation of the single-walled carbon nanotube and external harmonic excitation force, based on nonlocal elastic theory and Euler–Bernoulli beam theory, the nonlinear vibration equation of a fluid-conveying single-walled carbon nanotube is established. Analyzing the equation through the multidimensional Lindstedt–Poincaré method, and from the solvability condition of the nonlinear vibration equation, the cubic algebraic equation which indicates the amplitude–frequency relation is obtained. Based on the root discriminant of the cubic equation, the first order primary response of the pinned–pinned carbon nanotube is discussed. The relations among internal resonance, the amplitude and frequency of the external excitation force are analyzed in detail. When the external excite force frequency is around the first mode natural frequency, the first mode primary resonance occurs. If simultaneously the first two modes natural frequency ratio is around 3, internal resonance occurs and the internal resonance region depends on the amplitude of external excitation force.  相似文献   

5.
Shi  Baiyang  Dai  Wei  Yang  Jian 《Nonlinear dynamics》2022,109(2):419-442

This study presents an inerter-based nonlinear vibration isolator with geometrical nonlinearity created by configuring an inerter in a diamond-shaped linkage mechanism. The isolation performance of the proposed nonlinear isolator subjected to force or base-motion excitations is investigated. Both analytical and alternating frequency-time harmonic balance methods as well as numerical integration method are used to obtain the dynamic response. Beneficial performance of the nonlinear isolator is demonstrated by various performance indices including the force and displacement transmissibility as well as power flow variables. It is found that the use of the nonlinear inerter in the isolator can shift and bend the peaks of the transmissibility and time-averaged power flow to the low-frequency range, creating a larger frequency band of effective vibration isolation. It is also shown that the inertance-to-mass ratio and the initial distance of the nonlinear inerter can be effectively tailored to achieve reduced transmissibility and power transmission at interested frequencies. Anti-resonant peaks appear at specific frequency, creating near-zero energy transmission and significantly reducing vibration transmission to a base structure on which the proposed isolator is mounted.

  相似文献   

6.
粘弹性板的非线性动力稳定特性分析   总被引:2,自引:0,他引:2  
采用Boltzman积分型本构关系,分析了线粘弹性薄板在考虑几何线性与非线性时的长期动力稳定特性,设材料为标准线性固体,将系统的微分一积分型控制方程转化成微分型控制方程,由增量谐波平衡法确定主要动力不稳定区域的边界,发现粘弹性结构具有与一般阻尼系统不同的动力稳定特性,由于材料的粘性阻尼与松弛效应的综合影响,动力不稳定区域有不同程度的缩小与偏移,且在考虑几何线性与非线性情形下,其影响程度又不一样。  相似文献   

7.
Super-harmonic resonances may appear in the forced response of a weakly nonlinear oscillator having cubic nonlinearity, when the forcing frequency is approximately equal to one-third of the linearized natural frequency. Under super-harmonic resonance conditions, the frequency-response curve of the amplitude of the free-oscillation terms may exhibit saddle-node bifurcations, jump and hysteresis phenomena. A linear vibration absorber is used to suppress the super-harmonic resonance response of a cubically nonlinear oscillator with external excitation. The absorber can be considered as a small mass-spring-damper oscillator and thus does not adversely affect the dynamic performance of the nonlinear primary oscillator. It is shown that such a vibration absorber is effective in suppressing the super-harmonic resonance response and eliminating saddle-node bifurcations and jump phenomena of the nonlinear oscillator. Numerical examples are given to illustrate the effectiveness of the absorber in attenuating the super-harmonic resonance response.  相似文献   

8.
This paper investigates the nonlinear flexural dynamic behavior of a clamped Timoshenko beam made of functionally graded materials (FGMs) with an open edge crack under an axial parametric excitation which is a combination of a static compressive force and a harmonic excitation force. Theoretical formulations are based on Timoshenko shear deformable beam theory, von Karman type geometric nonlinearity, and rotational spring model. Hamilton’s principle is used to derive the nonlinear partial differential equations which are transformed into nonlinear ordinary differential equation by using the Least Squares method and Galerkin technique. The nonlinear natural frequencies, steady state response, and excitation frequency-amplitude response curves are obtained by employing the Runge–Kutta method and multiple scale method, respectively. A parametric study is conducted to study the effects of material property distribution, crack depth, crack location, excitation frequency, and slenderness ratio on the nonlinear dynamic characteristics of parametrically excited, cracked FGM Timoshenko beams.  相似文献   

9.
The viscoelastic behaviour of a poly(oxyethylene)-poly(oxybutylene) diblock copolymer in aqueous solution forming a face-centred cubic (fcc) micellar phase has been investigated using oscillatory shear rheometry. With increasing strain amplitude, the micellar solution was observed to undergo a transition from linear to non-linear behaviour, characterized by strong shear thinning. The non-linear behaviour observed in the stress response was analyzed by Fourier transformation of the waveform. Fourier analysis revealed that the high harmonic contributions to the shear stress response increased with strain amplitude and up to the 81st harmonic was observed for very large amplitudes. The onset of non-linear response as defined from the dependence of isochronal dynamic shear moduli on strain amplitude was found to be in good agreement with that defined by the appearance of a higher harmonic in the stress waveform. The amplitudes of the harmonic coefficients are compared to the predictions of a model for the nonlinear rheological response of a lyotropic cubic mesophase based on the stress response to a periodic lattice potential (Jones and McLeish 1995). It is found that the model is able to account for qualitative trends in the data such as the development of finite higher harmonics with increasing strain, but it does not describe the full frequency and strain dependence of these coefficients. Received: 31 May 2000 Accepted: 21 August 2000  相似文献   

10.
Quasi-zero-stiffness(QZS) vibration isolators have been widely studied,because they show excellent high static and low dynamic stiffnesses and can effectively solve low-frequency and ultralow-frequency vibration. However, traditional QZS(T-QZS)vibration isolators usually adopt linear damping, owing to which achieving good isolation performance at both low and high frequencies is difficult. T-QZS isolators exhibit hardening stiffness characteristics, and their vibration isolation performance is e...  相似文献   

11.
Dynamic numerical simulations were performed for a pyranose ring structure molecule attached to an Atomic Force Microscope (AFM) using a standard semiempirical potential energy surface model. The fundamental static force-extension behavior was first determined using a slow pulling base excitation at the AFM probe. The static force-extension curve displays a stiffness nonlinearity, both softening and hardening, that depends upon level of the pulling force. For the dynamic analysis, a single harmonic base excitation is applied to the AFM probe. A typical evolution process from periodic to aperiodic or chaotic motion obtained by varying the excitation frequency and amplitude is discussed. A strong chaotic response motion was generated for certain system parameters. The numerical analysis shows this chaotic response arises from a molecular structure conformational change.  相似文献   

12.
Singh  R.  Davies  P.  Bajaj  A. K. 《Nonlinear dynamics》2003,34(3-4):319-346
Analysis of the steady-state response of a polyurethane foam and masssystem to harmonic excitation is presented. The foam's uni-directionaldynamic behavior is modeled by using nonlinear stiffness, linearviscoelastic and velocity proportional damping components. Therelaxation kernel for the viscoelastic model is assumed to be a sum ofexponentials. The harmonic balance method is used to develop one- andtwo-term approximations to periodic solutions, and the equationsdeveloped are utilized for system identification. The identificationprocess is based on least-squares minimization of a sub-optimal costfunction that uses response data at various excitation frequencies andamplitudes. The effects of frequency range, spacing and amplitudes ofthe harmonic input on the results of the model parameter estimation arediscussed. The identification procedure is applied to measurements ofthe steady-state response of a base-excited foam-mass system. Estimatesof the system parameters at different levels of compression and inputamplitudes are thus determined. The choice of model-order and thefeasibility of describing the system behavior at several inputamplitudes with a single set of parameters are also addressed.  相似文献   

13.
The dynamic response of a high-static-low-dynamic stiffness (HSLDS) isolator formed by parallelly connecting a negative stiffness corrector which uses compressed Euler beams to a linear isolator is investigated in this study. Considering stiffness and load imperfections, the resonance frequency and response of the proposed isolator are obtained by employing harmonic balance method. The HSLDS isolator with quasi-zero stiffness characteristics can offer the lowest resonance frequency provided that there is only stiffness or load imperfection. If load imperfection always exists, there is no need to make the stiffness to zero since it cannot provide the lowest resonance frequency any longer. The reason for this unusual phenomenon is given. The dynamic response will exhibit softening, hardening, and softening-to-hardening characteristics, depending on the combined effect of load imperfection, stiffness imperfection, and excitation amplitude. In general, load imperfection makes the response exhibit softening characteristic and increasing stiffness imperfection will weak this effect. Increasing the excitation level will make the isolator undergo complex switch between different stiffness characteristics.  相似文献   

14.
运用分段线性系统分析理论,研究了间隙约束的悬臂梁振动系统在简谐激励 下系统稳态响应的动力学行为. 首先建立了间隙约束悬臂梁系统的动态响应分析模型,以传 递函数为基础,推导出系统的动力学分析方程及其求解方法. 然后对系统进行了数值求解分 析,得到了该系统稳态响应随激励幅值、激励频率、间隙接触刚度和阻尼变化的一般规律.  相似文献   

15.
In this paper, a nonlinear dynamic model of a quarter vehicle with nonlinear spring and damping is established. The dynamic characteristics of the vehicle system with external periodic excitation are theoretically investigated by the incremental harmonic balance method and Newmark method, and the accuracy of the incremental harmonic balance method is verified by comparing with the result of Newmark method. The influences of the damping coefficient, excitation amplitude and excitation frequency on the dynamic responses are analyzed. The results show that the vibration behaviors of the vehicle system can be control by adjusting appropriately system parameters with the damping coefficient, excitation amplitude and excitation frequency. The multi-valued properties, spur-harmonic response and hardening type nonlinear behavior are revealed in the presented amplitude-frequency curves. With the changing parameters, the transformation of chaotic motion, quasi-periodic motion and periodic motion is also observed. The conclusions can provide some available evidences for the design and improvement of the vehicle system.  相似文献   

16.
范舒铜  申永军 《力学学报》2022,54(9):2567-2576
黏弹性材料作为一种良好的减振材料,广泛应用于机械、航空和土木等领域.本文用黏弹性Maxwell器件代替传统非线性能量阱中的阻尼元件,提出一种新型的黏弹性非线性能量阱,并对该模型在简谐激励下的减振性能进行分析.首先,根据牛顿第二定律建立系统的动力学方程,采用谐波平衡法求解系统的幅频响应曲线,并利用MATLAB中的Runge-Kutta数值方法验证解析解的正确性,结果吻合良好.然后,分析黏弹性非线性能量阱的减振性能和参数的影响.最后,分析了不同质量比下非线性刚度比和阻尼比同时变化时减振效果的变化趋势,并讨论了黏弹性非线性能量阱的最佳取值范围.研究结果表明:主系统的最大振幅随着非线性刚度的增加先减小后增大;当参数选取恰当时,黏弹性非线性能量阱比传统非线性能量阱的减振效果更优;另外,随着质量比的增加,主系统最大振幅的最小值出现先减小后趋于不变的现象,且非线性刚度比和阻尼比的最佳取值范围有所增大.以上结论对黏弹性非线性能量阱的实际应用提供了一定的理论依据.  相似文献   

17.
范舒铜  申永军 《力学学报》2022,54(2):495-502
黏弹性材料在航空、机械、土木等领域具有广阔的应用前景,而具有1.5自由度的非线性Zener模型能更好地描述其特性.因此,研究多尺度法的推广和应用具有重要意义.在传统多尺度法的基础上,推广并利用多尺度法对非线性奇数阶微分方程进行研究,解决非线性奇数阶系统的动力学求解问题.以非线性Zener模型为例,首先通过推广的多尺度法...  相似文献   

18.
In this paper, the transmissibility of a viscoelastic beam supported by vertical springs is defined by proposing a new vertical elastic support boundary. By contrasting with the viscoelastic beam with rigid vertical supports and the rigid rod with vertical elastic support ends, the necessity of the transmissibility of an elastic structure with vertical elastic supports is proved. In order to approximately solve the steady-state responses of the nonlinear transverse vibration of the viscoelastic beam under periodic excitation, the harmonic balance method in conjunction with the pseudo arc-length method is adopted. The numerical results are calculated to confirm the approximate analytic results. The comparison between the rigid rod and the elastic beam shows that neglecting the bending vibration of the structures will underestimate the frequency range in which the elastic support produces an effective vibration isolation. On the other hand, the comparison between the rigid support and the spring support demonstrates that ignoring the elasticity of the support ends will create a false understanding of the force transmission of elastic structures. In general, this paper presents the necessity of studying the force transmission of elastic structures with elastic supports. Moreover, this paper will become the beginning of the study of the vibration isolation of the elastic structure.  相似文献   

19.
This paper studies the non-linear dynamics of a soft magneto-elastic Cartesian manipulator with large transverse deflection. The system has been subjected to a time varying magnetic field and a harmonic base excitation at the roller-supported end. Unlike elastic and viscoelastic manipulators, here the governing temporal equation of motion contains additional two frequency forced, and linear and non-linear parametric excitation terms. Method of multiple scales has been used to solve the temporal equation of motion. The influences of various system parameters such as amplitude and frequency of magnetic field strength, amplitude and frequency of support motion, and the payload on the frequency response curves have been investigated for three different resonance conditions. With the help of numerical results, it has been shown that by using suitable amplitude and frequency of magnetic field, the vibration of the manipulator can be significantly controlled. The developed results and expressions can find extensive applications in the feed-forward vibration control of the flexible Cartesian manipulator using magnetic field.  相似文献   

20.
Lin  R.  Leng  G.  Lee  H. P. 《Nonlinear dynamics》1997,14(1):1-22
The dynamic behavior of a one-degree-of-freedom, parametrically excited nonlinear system is investigated. The Galerkin method is applied to the principal and fundamental parameteric resonance of the system. The continuation method is used to study the change of harmonic oscillation with respect to the variation of excitation frequency. The numerical stability analysis of the trivial solution is carried out and the stable and unstable regions of the trivial solution are given. They are found to agree with the results obtained by the analytical method of Galerkin. Periodic solutions are traced and the coexistence of multi-periodic solutions is observed With the change of excitation frequency the large amplitude periodic-2 oscillation is found to be in the same closed branch with the small amplitude periodic-2 solution. In addition, the bifurcation pattern of the trivial solution is found to change from subcritical Hopf bifurcation into supercritical Hopf bifurcation with the increase of excitation amplitude. Combined with the conventional numerical integration method, new complex dynamic behavior is detected.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号