首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Review of non-reactive and reactive wetting of liquids on surfaces   总被引:5,自引:0,他引:5  
Wettability is a tendency for a liquid to spread on a solid substrate and is generally measured in terms of the angle (contact angle) between the tangent drawn at the triple point between the three phases (solid, liquid and vapour) and the substrate surface. A liquid spreading on a substrate with no reaction/absorption of the liquid by substrate material is known as non-reactive or inert wetting whereas the wetting process influenced by reaction between the spreading liquid and substrate material is known as reactive wetting. Young's equation gives the equilibrium contact angle in terms of interfacial tensions existing at the three-phase interface. The derivation of Young's equation is made under the assumptions of spreading of non-reactive liquid on an ideal (physically and chemically inert, smooth, homogeneous and rigid) solid, a condition that is rarely met in practical situations. Nevertheless Young's equation is the most fundamental starting point for understanding of the complex field of wetting. Reliable and reproducible measurements of contact angle from the experiments are important in order to analyze the wetting behaviour. Various methods have been developed over the years to evaluate wettability of a solid by a liquid. Among these, sessile drop and wetting balance techniques are versatile, popular and provide reliable data. Wetting is affected by large number of factors including liquid properties, substrate properties and system conditions. The effect of these factors on wettability is discussed. Thermodynamic treatment of wetting in inert systems is simple and based on free energy minimization where as that in reactive systems is quite complex. Surface energetics has to be considered while determining the driving force for spreading. Similar is the case of spreading kinetics. Inert systems follow definite flow pattern and in most cases a single function is sufficient to describe the whole kinetics. Theoretical models successfully describe the spreading in inert systems. However, it is difficult to determine the exact mechanism that controls the kinetics since reactive wetting is affected by a number of factors like interfacial reactions, diffusion of constituents, dissolution of the substrate, etc. The quantification of the effect of these interrelated factors on wettability would be useful to build a predictive model of wetting kinetics for reactive systems.  相似文献   

2.
Spreading of the AgCuTi filler metal over a pure molybdenum substrate under a high‐purity argon atmosphere was studied at elevated temperatures, within the range of 1283 ~ 1373 K. Real‐time in situ observations and quantitative measurements assisted by hot‐stage microscopy were used to analyze the kinetics of the triple‐line movement. The state of the interface between the substrate and the resolidified alloy and in the neighborhood of the triple line was considered. The empirical data indicate that wetting of AgCuTi alloy on the pure molybdenum substrate features a similar trend of the triple‐line kinetics. The triple‐line equivalent radius of the front during spreading increases initially, with a large spreading rate, and subsequently changes gradually the rate approaching to an asymptotic value. Kinetics of the triple‐line movement throughout the spreading process shows that the wetting follows the power law, Rn ~ t, n ~ 8. During spreading, Ag‐based solid solution, AgCu eutectic phase, and CuTi binary phase were formed along the interface within the joint zone, hence the spreading evolves under weak reactive conditions. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

3.
Flux-assisted wetting and spreading of Al on TiC   总被引:1,自引:0,他引:1  
The effect of a K-Al-F-based flux on the spreading of Al on TiC, at temperatures up to 900 degrees C, in Ar and in air has been studied. Whilst obtuse contact angles were observed without flux, the flux facilitated rapid spreading to a perfect wetting condition, in both Ar and in air. The atmosphere was found to have a weak effect on the spreading kinetics as the liquid flux provides a locally protective atmosphere by spreading over the TiC surface and also on the solid surface of Al. The flux dissolves the aluminium oxide, covering Al, so that when Al melts, and the oxide layer has been removed or weakened, intimate contact occurs between liquid Al and the TiC substrate facilitating spontaneous spreading and instantaneous wetting of liquid Al on TiC. Since flux-assisted spreading is very rapid and occurs without the formation of a reaction layer at the Al/TiC interface, this process is very different to the reactive wetting behaviour previously reported in the Al-TiC system.  相似文献   

4.
The adsorption between a liquid drop and a micro-particle in an air or an air bubble and a micro-particle in water is dominated by liquid-solid or air-solid interfacial tension and wetting area of the liquid or air on the particle surface. The wetting area is determined by the spreading of the liquid drop or the bubble on the micro-particle. To explore this spreading, a wetting model of a fluid phase on a spherical particle was built. According to the theoretical results, the contact angle is constant when a fluid phase spreads on a spherical solid surface; the micro-particle can not submerge under a fluid when only interfacial tensions are involved and the wetting is not a complete wetting. The corresponding experiments were performed to confirm the theoretical results.  相似文献   

5.
Controlling the spatial distribution of liquid droplets on surfaces via surface energy patterning can be used to deliver material to specified regions via selective liquid/solid wetting. Although studies of the equilibrium shape of liquid droplets on heterogeneous substrates exist, much less is known about the corresponding wetting kinetics. Here we present large-scale atomistic simulations of liquid nanodroplets spreading on chemically patterned surfaces. Results are presented for lines of polymer liquid (droplets) on substrates consisting of alternating strips of wetting (equilibrium contact angle theta0 = 0 degrees) and nonwetting (theta0 approximately 90 degrees) material. Droplet spreading is compared for different wavelength lambda of the pattern and strength of surface interaction on the wetting strips. For small lambda, droplets partially spread on both the wetting and nonwetting regions of the substrate to attain a finite contact angle less than 90 degrees. In this case, the extent of spreading depends on the interaction strength in the wetting regions. A transition is observed such that, for large lambda, the droplet spreads only on the wetting region of the substrate by pulling material from nonwetting regions. In most cases, a precursor film spreads on the wetting portion of the substrate at a rate strongly dependent on the width of the wetting region.  相似文献   

6.
The spreading of surfactant solutions over hydrophobic surfaces is considered from both theoretical and experimental points of view. Water droplets do not wet a virgin solid hydrophobic substrate. It is shown that the transfer of surfactant molecules from the water droplet onto the hydrophobic surface changes the wetting characteristics in front of the drop on the three-phase contact line. The surfactant molecules increase the solid-vapor interfacial tension and hydrophilize the initially hydrophobic solid substrate just in front of the spreading drop. This process causes water drops to spread over time. The time of evolution of the spreading of a water droplet is predicted and compared with experimental observations. The assumption that surfactant transfer from the drop surface onto the solid hydrophobic substrate controls the rate of spreading is confirmed by our experimental observations. Copyright 2000 Academic Press.  相似文献   

7.
In this paper spreading and sorption of a droplet on an anisotropic, layered porous substrate are investigated numerically. Flow in the saturated part of the porous material is governed by Darcy's law, assuming a sharp wetting front separating the saturated regions from the dry regions. Numerical results are presented for spreading and sorption of droplets in their dependence on the material and process parameters for axisymmetric configurations. Limiting cases of sorption into infinitely thick and very thin porous layers are considered. For an analytical sorption model for thin substrates fed by an infinite reservoir a correction term taking into account the flow resistance in the inlet region is derived and the consistence of the modified model with numerical and experimental results is shown. For two-layer substrates, numerical results on the influence of the layer permeabilities on the sorption kinetics are presented.  相似文献   

8.
The dynamics of polymeric liquids and mixtures spreading on a solid surface have been investigated on completely wetting and partially wetting surfaces. Drops were formed by pushing the test liquid through a hole in the underside of the substrate, and the drop profiles were monitored as the liquid wet the surface. Silicon surfaces coated with diphenyldichlorosilane (DPDCS) and octadecyltrichlorosilane (OTS) were used as wetting and partial wetting surfaces, respectively, for the fluids we investigated. The response under complete and partial wetting conditions for a series of polypropylene glycols (PPG) with different molecular weights and the same surface tension could be collapsed onto a single curve when scaling time based on the fluid viscosity, the liquid-vapor surface tension, and the radius of a spherical drop with equivalent volume. A poly(ethylene glycol) (PEG300) and a series of poly(ethylene oxide-rand-propylene oxide) copolymers did not show the same viscosity scaling when spread on the partially wetting surface. A combined model incorporating hydrodynamic and molecular-kinetic wetting models adequately described the complete wetting results. The assumptions in the hydrodynamic model, however, were not valid under the partial wetting conditions in our work, and the molecular-kinetic model was chosen to describe our results. The friction coefficient used in the molecular-kinetic model exhibited a nonlinear dependence with viscosity for the copolymers, indicating a more complex relationship between the friction coefficient and the fluid viscosity.  相似文献   

9.
Surfactant-mediated wetting and spreading are ubiquitous. Understanding of these phenomena in-depth allows precise tailoring of wetting performance which can contribute to global challenges in the food supply chain, healthcare, ecology and industrial processes. The first part of this review shows how surfactants can be used to improve the efficacy of fertilisers and pesticides in agriculture, enhanced oil recovery, treatment of lung diseases and extinguishing fires involving flammable liquids. The second part provides analysis of recent studies on wetting and spreading over solid substrates. It includes discussion on the effect of surfactants on the outcome of the impact of liquid drops, the wetting state after impact, autophobic effect and spreading kinetics for both partial and complete wetting, including superspreading. Perspectives of future development in the area of surfactant-assisted wetting and spreading on solid substrates are outlined.  相似文献   

10.
聚合物熔体膜在基体表面上的润湿和铺展行为受铺展系数和Hamaker常数影响。对于不能在基体表面上铺展的聚合物膜,当处于其玻璃化温度以上时,聚合物熔体膜将破裂,出现非连续区域。随着体系处于聚合物玻璃化温度以上时间的延长,非连续部分尺寸不断增长,增长速率与表面张力、聚合物粘度、聚合物液滴在基体表面的平衡接触角等因素有关,平衡后聚合物以液滴的形式在基体表面稳定存在。将带功能端基聚合物加入不能在基体表面上铺展的聚合物中,通过修饰聚合物与基体界面或改变聚合物熔体膜的表面张力,可以使原来不能在基体表面铺展的聚合物保持稳定。本文综述了聚合物熔体膜的铺展和润湿动力学研究进展,并归纳了使聚合物熔体膜稳定的方法。  相似文献   

11.
The spreading of a tiny macroscopic drop of a nonvolatile, completely wetting liquid over a flat solid is considered, assuming no gravitation. A liquid, in creeping, is subjected to capillary forces and van der Waals forces. This nonstationary and nonlinear problem in the dynamics of the wetting film from a droplet is studied using numerical modeling. The precursor wetting film motion is described by an evolution equation with conditions at the moving boundaries. The wetting line is regarded as an unknown boundary to be determined in the course of solution. A simplified equation for the wetting line dynamics is analyzed. The difference between the wetting line radius and a fixed (nonzero) radius is described by a diffusion time law. Results of numerical experiments show the simplified law of wetting to be valid over a wide range of spreading times (or a wide range of radii of the wetting line). Copyright 2000 Academic Press.  相似文献   

12.
Superspreading driven by Marangoni flow   总被引:7,自引:0,他引:7  
The spontaneous spreading (called superspreading) of aqueous trisiloxane ethoxylate surfactant solutions on hydrophobic solid surfaces is a fascinating phenomenon with several practical applications. For example, the ability of trisiloxane ethoxylate surfactants to enhance the spreading of spray solutions on waxy weed leaf surfaces, such as velvetleaf (Abutilion theophrasti), makes them excellent wetting agents for herbicide applications. The superspreading ability of silicone surfactants has been known for decades, but its mechanism is still not well understood. In this paper, we suggest that the spreading of trisiloxane ethoxylates is controlled by a surface tension gradient, which forms when a drop of surfactant solution is placed on a solid surface. The proposed model suggests that, as the spreading front stretches, the surface tension increases (the surfactant concentration becomes lower) at the front relative to the top of the droplet, thereby establishing a dynamic surface tension gradient. The driving force for spreading is due to the Marangoni effect, and our experiments showed that the higher the gradient, the faster the spreading. A simple model describing the phenomenon of superspreading is presented. We also suggest that the superspreading behavior of trisiloxane ethoxylates is a consequence of the molecular configuration at the air/water surface (i.e. small and compact hydrophobic part), as shown by molecular dynamics modeling. We also found that the aggregates and vesicles formed in trisiloxane solutions do not initiate the spreading process and therefore these structures are not a requirement for the superspreading process.  相似文献   

13.
Inertial spreading occurs at the onset of a droplet wetting a solid; for low viscosity, highly wetting liquids, very high contact line velocities have been observed during this regime. Initial wetting kinetics are so rapid that careful experimental exploration of this phenomenon has only occurred over the past ~ 10 years. Herein, we review recent experimental and computational investigations into inertial spreading. We highlight results and discussion from literature that bear out an initially surprising conclusion: even nanometer scale drops exhibit a regime of early stage wetting kinetics that are well described as inertia dominated. Given this, some focus is placed on reviewing results from atomic scale simulations of inertial wetting and how they can be used to battle the lack of understanding regarding fundamental mechanisms of rapid contact line advancement. To bolster this discussion, new results are also presented from molecular dynamics simulations exploring inertial wetting in metallic systems. It is demonstrated that atomic scale simulations can reveal nanoscale size effects on inertial wetting and that, after accounting for these nanoscale effects, inertial regime spreading data for nanodrops are fully explained by otherwise continuum fluid mechanics theory. Data obtained are thus used to explore the role of order in liquid films near solid surfaces in controlling contact line advancement. In exploring the structure of an ordered liquid layer adjacent to the solid surface that undergoes significant slip during inertial spreading, it is demonstrated that a tensile strain gradient manifests in the layer as the film edge is approached.  相似文献   

14.
Interest in wetting dynamics processes has immensely increased during the past 10-15 years. In many industrial and medical applications, some strategies to control drop spreading on solid surfaces are being developed. One possibility is that a surfactant, a surface-active polymer, a polyelectrolyte or their mixture are added to a liquid (usually water). The main idea of the paper is to give an overview on some dynamic wetting and spreading phenomena in the presence of surfactants in the case of smooth or porous substrates, which can be either moderately or highly hydrophobic surfaces based on the literature data and the authors own investigations. Instability problems associated with spreading over dry or pre-wetted hydrophilic surfaces as well as over thin aqueous layers are briefly discussed. Toward a better understanding of the superspreading phenomenon, unusual wetting properties of trisiloxanes on hydrophobic surfaces are also discussed.  相似文献   

15.
16.
The kinetics of spreading of aqueous trisiloxane solutions over different solid hydrophobic substrates has been investigated experimentally. Two pure trisiloxane surfactants with 6 and 8 oxyethylene groups at concentrations close to the critical aggregation concentration and the critical wetting concentration were used in the spreading experiments. Three hydrophobic substrates (Teflon AF, Parafilm, and polystyrene) having different surface properties were used. It was found that the spreading behaviour depends on the hydrophobic/roughness properties of substrates. The rapid spreading and complete wetting were observed for both trisiloxane surfactant solutions at the critical wetting concentration on a substrate with a moderate hydrophobicity. For both highly hydrophobic Teflon AF and Parafilm substrates only partial wetting was found. The experiments have shown that the spreading behaviour over all substrates proceeds at two stages. At the critical aggregation concentration for both trisiloxanes on all substrates the time lag of the spreading was detected. The article is published in the original.  相似文献   

17.
This study investigated the drop-spreading dynamics of pseudo-plastic and dilatant fluids. Experimental results indicated that the spreading law for both fluids is related to rheological characteristics or power exponent n. For the completely wetting system, the evolution of the wetting radius over time can be expressed by the power law R = atm, where the spreading exponent m of the dilatant fluids is >0.1 and the spreading exponent m of pseudo-plastic fluids is <0.1. The strength of non-Newtonian effects is positively correlated to the extent of deviation from the theoretical value 0.1 of m for Newtonian fluids. For the partially wetting system, the power law on the time dependence of the wetting radius no longer holds; therefore, an exponential power law, R = Req(1-exp(-at(m)/Req)), is proposed, where Req denotes the equilibrium radius of drop and a is a coefficient. Comparing experimental data with the exponential power law revealed that both are in good agreement.  相似文献   

18.
Wetting and spreading phenomena are the most important parameters for understanding of froth flotation practice. The wetting and spreading of fluids on the solid surface should be considered in the high efficiency flotation process. These phenomena involve surface tension forces, contact line dynamics, surface roughness and heterogeneity, contact angles, bubble–particle interactions and other factors. This review highlights the various concepts of contact angles and well-known equations in this respect and compares these equations. Based on this review, flotation selectivity and efficiency are highly dependent on solid–liquid contact angles and collision, collection, attachment, and stability efficiency could be predicted by wetting and spreading roles. In order to control flotation performance, efforts should be made to determine wetting characteristic of the flotation process. It is imperative that an improved understanding of wetting and spreading phenomena in the phase's interfaces will provide an improved and efficient flotation practice. It is proposed that future research should focus on the scientific and engineering aspect of wetting and spreading phenomena on flotation and on the development of a method to enhance flotation performance by controlling these phenomena.  相似文献   

19.
It has previously been shown that, under high stress and consequently at short times to failure, a major factor governing the environmental stress cracking (ESC) of polyethylene is the ability of a liquid environment to penetrate a growing fissure at a sufficiently high speed to maintain contact with the fracture front. In this earlier study, viscosity was shown to play a significant role in this kinetic effect. The purpose of the present paper is to demonstrate that another property of the solid–liquid system influencing ESC under these high stress conditions is the spreading coefficient of the liquid on the polymer—the parameter defining the tendency of the liquid to wet the polyethylene. It has been shown that the spreading coefficient can be considered as a force and this force in conjunction with atmospheric pressure constitutes the force necessary to drive the liquid into the growing crack.  相似文献   

20.
Molecular dynamics simulations are used to study the spreading of binary polymer nanodroplets in a cylindrical geometry. The polymers, described by the bead-spring model, spread on a flat surface with a surface-coupled Langevin thermostat to mimic the effects of a corrugated surface. Each droplet consists of chains of length 10 or 100 monomers with approximately 350,000 monomers total. The qualitative features of the spreading dynamics are presented for differences in chain length, surface interaction strength, and composition. When the components of the droplet differ only in the surface interaction strength, the more strongly wetting component forms a monolayer film on the surface even when both materials are above or below the wetting transition. In the case where the only difference is the polymer chain length, the monolayer film beneath the droplet is composed of an equal amount of short chain and long chain monomers even when one component (the shorter chain length) is above the wetting transition and the other is not. The fraction of short and long chains in the precursor foot depends on whether both the short and the long chains are in the wetting regime. Diluting the concentration of the strongly wetting component in a mixture with a weakly wetting component decreases the rate of diffusion of the wetting material from the bulk to the surface and limits the spreading rate of the precursor foot, but the bulk spreading rate actually increases when both components are present. This may be due to the strongly wetting material pushing out the weakly wetting material as it moves toward the precursor foot.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号