首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ab initio computational study of the electronic structure and infrared spectra of donor-acceptor complexes formed between SO3 and CH3X (X = F, Cl, Br) molecules was carried out at the MP2(full)/6-31G(d) level of theory. The calculated complexation energy at G2MP2 level shows that stability of complexes decrease, as CH3Cl-SO3 > CH3Br-SO3 > CH3F-SO3. The NBO partitioning scheme show that the lengthening of the C-F, C-Cl, and C-Br bond lengths, upon complexation, is due to an decreasing "s" character in these bonds.  相似文献   

2.
A family of enantiomerically pure oxonium ions, that is O-protonated 1-aryl-1-methoxyethanes, has been generated in the gas phase by the (CH(3))(2)Cl(+) methylation of the corresponding 1-arylethanols. Some information on their reaction dynamics was obtained from a detailed kinetic study of their inversion of configuration and dissociation. The activation parameters of the inversion reaction are found to obey two different isokinetic relationships depending upon the nature and the position of the substituents in the oxonium ions. In contrast, the activation parameters of the dissociation reaction obey a single isokinetic relationship. The inversion and dissociation rate constants do not follow simple linear free-energy relationships. This complicated kinetic picture has been rationalized in terms of different activation dynamics in gaseous CH(3)Cl, which, in turn, determine the reaction dynamics of the oxonium ion. When the predominant activation of the oxonium ion involves resonant energy exchange from the 1015 cm(-1) CH(3) rocking mode of unperturbed CH(3)Cl, the inversion reaction proceeds through the dynamically most favored TS, characterized by the unassisted C(alpha)bond;O bond elongation. When, instead, the activation of the oxonium ions requires the formation of an intimate encounter complex with CH(3)Cl, the inversion reaction takes place via the energetically most favored TS, characterized by multiple coordination of the CH(3)OH moiety with the H(alpha) and H(ortho) atoms of the benzylic residue. The activation dynamics operating in the intimate encounter complex with CH(3)Cl is also responsible for the dissociation of most selected oxonium ions.  相似文献   

3.
Time-independent quantum scattering calculations have been carried out on the Walden inversion S(N)2 reaction Cl(-)+CH(3)Cl(')(v(1),v(2),v(3))-->ClCH(3)(v(1) ('),v(2) ('),v(3) ('))+Cl('-). The two C-Cl stretching modes (quantum numbers v(3) and v(3) (')) and the totally symmetric internal modes of the methyl group (C-H stretching vibration, v(1) and v(1) ('), and inversion bending vibration, v(2) and v(2) (')) are treated explicitly. A four-dimensional coupled cluster potential energy surface is employed. The scattering problem is formulated in hyperspherical coordinates using the exact Hamiltonian and exploiting the full symmetry of the problem. Converged state-selected reaction probabilities and product distributions have been calculated up to 6100 cm(-1) above the vibrational ground state of CH(3)Cl, i.e., up to initial vibrational excitation (2,0,0). In order to extract all scattering resonances, the energetic grid was chosen to be very fine, partly down to a resolution of 10(-12) cm(-1). Up to 2500 cm(-1) translational energy, initial excitation of the umbrella bending vibration, (0,1,0), is more efficient for reaction than exciting the C-Cl stretching mode, (0,0,1). The combined excitation of both vibrations results in a synergic effect, i.e., a considerably higher reaction probability than expected from the sum of both independent excitations, even higher than (0,0,2) up to 1500 cm(-1) translational energy. Product distributions show that the umbrella mode is strongly coupled to the C-Cl stretching mode and cannot be treated as a spectator mode. The reaction probability rises almost linearly with increasing initial excitation of the umbrella bending mode. The effect with respect to the C-Cl stretch is five times larger for more than two quanta in this mode, and in agreement with previous work saturation is found. Exciting the high-frequency C-H stretching mode, (1,0,0), yields a large increase for small energies [more than two orders of magnitude larger than (0,0,0)], while for translational energies higher than 2000 cm(-1), it becomes a pure spectator mode. For combined initial excitations including the symmetric C-H stretch, the spectator character of the latter is even more pronounced. However, up to more than 1500 cm(-1) translational energy, the C-H vibration does not behave adiabatically during the course of reaction, because only 20% of the initial energy is found in the same mode of the product molecule. The distribution of resonance widths and peak heights is discussed, and it is found that individual resonances pertinent to intermediate complexes Cl(-)...CH(3)Cl show product distributions independent of the initial vibrational state of the reactant molecule. The relatively high reactivity, of resonance states with respect to excitation of any mode, found in previous work is confirmed in the present calculations. However, reactivity of intermediate states and reactivity with respect to initial vibrational excitation have to be distinguished. There is a strong mixing between the vibrational states reflected in numerous avoided crossings of the hyperspherical adiabatic curves.  相似文献   

4.
Lyon JT  Cho HG  Andrews L  Hu HS  Li J 《Inorganic chemistry》2007,46(21):8728-8738
The XC[triple bond]ReX3 complexes (X = F, Cl) are produced by CX(4) reaction with laser-ablated Re atoms, following oxidative C-X insertion and alpha-halogen migration in favor of the carbon-metal triple bond and are identified through the observation of characteristic absorptions in the argon matrix infrared spectra and comparison with vibrational frequencies calculated by density functional theory. The methylidyne C-F and C-Cl stretching absorptions are observed near 1584 and 1328 cm-1, and the C-H stretching modes for HC[triple bond]ReX3 at 3104 and 3097 cm(-1), respectively, which are substantially higher than the precursor stretching modes and in agreement with the general trend that higher s-orbital character in carbon hybridization leads to a higher stretching frequency. The Jahn-Teller effect in the doublet-state XC[triple bond]ReX3 and HC[triple bond]ReX3 complexes gives rise to distorted structures with Cs symmetry and two equivalent longer Re-X bonds and one slightly shorter Re-X bond.  相似文献   

5.
The recombination of CF(2)Cl and CH(2)F radicals was used to prepare CF(2)ClCH(2)F* molecules with 93 ± 2 kcal mol(-1) of vibrational energy in a room temperature bath gas. The observed unimolecular reactions in order of relative importance were: (1) 1,2-ClH elimination to give CF(2)═CHF, (2) isomerization to CF(3)CH(2)Cl by the interchange of F and Cl atoms and (3) 1,2-FH elimination to give E- and Z-CFCl═CHF. Since the isomerization reaction is 12 kcal mol(-1) exothermic, the CF(3)CH(2)Cl* molecules have 105 kcal mol(-1) of internal energy and they can eliminate HF to give CF(2)═CHCl, decompose by rupture of the C-Cl bond, or isomerize back to CF(2)ClCH(2)F. These data, which provide experimental rate constants, are combined with previously published results for chemically activated CF(3)CH(2)Cl* formed by the recombination of CF(3) and CH(2)Cl radicals to provide a comprehensive view of the CF(3)CH(2)Cl* ? CF(2)ClCH(2)F* unimolecular reaction system. The experimental rate constants are matched to calculated statistical rate constants to assign threshold energies for the observed reactions. The models for the molecules and transition states needed for the rate constant calculations were obtained from electronic structures calculated from density functional theory. The previously proposed explanation for the formation of CF(2)═CHF in thermal and infrared multiphoton excitation studies of CF(3)CH(2)Cl, which was 2,2-HCl elimination from CF(3)CH(2)Cl followed by migration of the F atom in CF(3)CH, should be replaced by the Cl/F interchange reaction followed by a conventional 1,2-ClH elimination from CF(2)ClCH(2)F. The unimolecular reactions are augmented by free-radical chemistry initiated by reactions of Cl and F atoms in the thermal decomposition of CF(3)CH(2)Cl and CF(2)ClCH(2)F.  相似文献   

6.
Utilizing threshold photoelectron-photoion coincidence (TPEPICO) velocity imaging, dissociation of state-selected CH(3)Cl(+) ions was investigated in the excitation energy range of 11.0-18.5 eV. TPEPICO time-of-flight mass spectra and three-dimensional time-sliced velocity images of CH(3)(+) dissociated from CH(3)Cl(+)(A(2)A(1) and B(2)E) ions were recorded. CH(3)(+) was kept as the most dominant fragment ion in the present energy range, while the branching ratio of CH(2)Cl(+) fragment was very low. For dissociation of CH(3)Cl(+)(A(2)A(1)) ions, a series of homocentric rings was clearly observed in the CH(3)(+) image, which was assigned as the excitation of umbrella vibration of CH(3)(+) ions. Moreover, a dependence of anisotropic parameters on the vibrational states of CH(3)(+)(1(1)A') provided a direct experimental evidence of a shallow potential well along the C-Cl bond rupture. For CH(3)Cl(+)(B(2)E) ions, total kinetic energy released distribution for CH(3)(+) fragmentation showed a near Maxwell-Boltzmann profile, indicating that the Cl-loss pathway from the B(2)E state was statistical predissociation. With the aid of calculated Cl-loss potential energy curves of CH(3)Cl(+), CH(3)(+) formation from CH(3)Cl(+)(A(2)A(1)) ions was a rapid direct fragmentation, while CH(3)Cl(+)(B(2)E) ions statistically dissociated to CH(3)(+) + Cl via internal conversion to the high vibrational states of X(2)E.  相似文献   

7.
李来才  邹勤  田安民 《化学学报》2003,61(10):1524-1527
用量化学UMP2方法,在6-311++G**基组水平上研究了CH_2X(X=H,FCI)与臭氧反 应机理,全参数优化了反应过程中反应物、中间体、过渡态和产物的内何构型,在 UQCISD(T)/6-311++G**水平上计算了它们的能量,并对它们进行了振动分析,以 确定中间体和过渡态的直实性。从CH_2X(X=H,FCI)与O_3的反应机理的研究结果看 ,它们与O_3反应的活性都比较强,相对而言,活性大小顺序为CH_2F>CH_3> CH_2CI,也就是说,CH_2F自由基与臭氧间的反应活性最强,对大气臭氧的损耗将 是最大的。同时研究还发现CH_2X(X=H,FCI)系列自由基与O_3的反应都是强放热反 应。  相似文献   

8.
In the gas-phase reactions of halonitro- and dinitrophenide anions with X (X = F, Cl, Br, NO(2)) and NO(2) groups in ortho or para position to each other with selected C-H acids: CH(3)CN, CH(3)COCH(3), and CH(3)NO(2), products of the S(N)Ar-type reaction are formed. Nitrophenide anions are generated by decarboxylation of the respective nitrobenzenecarboxylate anions in ESI ion source and the S(N)Ar reaction takes place either in the medium-pressure zone of the ion source or in the collision chamber of the triple quadrupole mass spectrometer. In the case of F, Cl, and NO(2) derivatives, the main ionic product is the respective [NO(2)-Ph-CHR](-) anion (R = CN, COCH(3), NO(2)). In the case of Br derivatives, the main ionic product is Br(-) ion because it has lower proton affinity than the [NO(2)-Ph-CHR](-) anion (for R = CN, COCH(3)). For some halonitrophenide anion C-H acid pairs of reactants, the S(N)Ar reaction is competed by the formation of halophenolate anions. This reaction can be rationalized by the single electron-transfer mechanism or by homolytic C-H bond cleavage in the proton-bound complex, both resulting in the formation of the halonitrobenzene radical anion, which in turn undergoes -NO(2) to -ONO rearrangement followed by the NO(.) elimination.  相似文献   

9.
Identity ion-pair S(N)2 reactions LiX + CH(3)X --> XCH(3) + LiX (X = F, Cl, Br, and I) have been investigated in the gas phase and in solution at the level of the modified Gaussian-2 theory. Two possible reaction mechanisms, inversion and retention, are discussed. The reaction barriers relative to the complexes for the inversion mechanism [DeltaH(cent) ( not equal )(inv)] are found to be much higher than the corresponding values for the gas phase anionic S(N)2 reactions, decreasing in the following order: F (263.6 kJ mol(-1)) > Cl (203.3 kJ mol(-1)) > Br (174.7 kJ mol(-1)) > I (150.7 kJ mol(-1)). The barrier gaps between the two mechanisms [DeltaH(cent) ( not equal ) (ret) - DeltaH(cent) ( not equal ) (inv)] increase in the order F (-62.7 kJ mol(-1)) < Cl (4.4 kJ mol(-1)) < Br (24.9 kJ mol(-1)) < I (45.1 kJ mol(-1)). Thus, the retention mechanism is energetically favorable for fluorine and the inversion mechanism is favored for other halogens, in contrast to the anionic S(N)2 reactions at carbon where the inversion reaction channel is much more favorable for all of the halogens. The stabilization energies for the dipole-dipole complexes CH(3)X. LiX (DeltaH(comp)) are found to be similar for the entire set of systems with X = F, Cl, Br, and I, ranging from 53.4 kJ mol(-1) for I up to 58.9 kJ mol(-1) for F. The polarizable continuum model (PCM) has been used to evaluate the direct solvent effects on the energetics of the anionic and ion-pair S(N)2 reactions. The energetic profiles are found to be still double-well shaped for most of the ion-pair S(N)2 reactions in the solution, but the potential profile for reaction LiI + CH(3)I is predicted to be unimodal in the protic solvent. Good correlations between central barriers [DeltaH(cent) ( not equal ) (inv)] with the geometric looseness of the inversion transition state %C-X( not equal ), the dissociation energies of the C-X bond (D(C-X)) and Li-X bond (D(Li-X)) are observed, respectively.  相似文献   

10.
The entrance channel potentials of the prototypical polyatomic reaction family X + CH(4) → HX + CH(3) (X = F, Cl, Br, I) are investigated using anion photoelectron spectroscopy and high-level ab initio electronic structure computations. The pre-reactive van der Waals (vdW) wells of these reactions are probed for X = Cl, Br, I by photodetachment spectra of the corresponding X(-)-CH(4) anion complex. For F-CH(4), a spin-orbit splitting (~1310 cm(-1)) much larger than that of the F atom (404 cm(-1)) was observed, in good agreement with theory. This showed that in the case of the F-CH(4) system the vertical transition from the anion ground state to the neutral potentials accesses a region between the vdW valley and transition state of the early-barrier F + CH(4) reaction. The doublet splittings observed in the other halogen complexes are close to the isolated atomic spin-orbit splittings, also in agreement with theory.  相似文献   

11.
A recent report claims to have prepared [18F]XeF2 by exchange between a large stoichiometric excess of XeF2 and no-carrier-added 18F-, as salts of the [2,2,2-crypt-M+] (M = K or Cs) cations, in CH2Cl2 or CHCl3 solvents at room temperature. Attempts to repeat this work have proven unsuccessful and have led to a critical reinvestigation of chemical exchange between fluoride ion, in the form of anhydrous [N(CH3)4][F] and [2,2,2-crypt-K][F], and XeF2 in dry CH2Cl2 and CH3CN solvents. It was shown, by use of 19F and 1H NMR spectroscopies, that [2,2,2-crypt-K][F] rapidly reacts with CH3CN solvent to form HF2-, and with CH2Cl2 solvent to form HF2-, CH2ClF, and CH2F2 at room temperature. Moreover, XeF2 rapidly oxidizes 2,2,2-crypt in CH2Cl2 solvent at room temperature to form HF and HF2-. Thus, the exchange between XeF2 and no-carrier-added 18F- reported in the prior work arises from exchange between XeF2 and HF/HF2-, and does not involve fluoride ion. However, naked fluoride ion has been shown to undergo exchange with XeF2 under rigorously anhydrous and HF-free conditions. A two-dimensional 19F-19F EXSY NMR study demonstrated that [N(CH3)4][F] exchanges with XeF2 in CH3CN solvent, but exchange of HF2- with either XeF2 or F- is not detectable under these conditions. The exchange between XeF2 and F- is postulated to proceed by the formation of XeF3- as the exchange intermediate.  相似文献   

12.
Density functional theory as well as highly correlated ab initio molecular orbital theory was used to explore the possibility of activating C-F bonds in fluoroalkanes by organic macrocycles. The results indicate that the reaction between fluoro-calix [4]pyrrole-tert-amine and CH3F via a Menshutkin displacement mechanism is highly favorable and competitive from a thermochemical point of view with the very efficient C-Cl activation by a simple macrocyclic amine recently reported in the literature (Stanger, L. J.; Noll, B. C.; Gonzalez, C.; Marquez, M.; Smith, B. D. J. Am. Chem. Soc. 2005, 127, 4184).  相似文献   

13.
Compound Al(OiPr)3 is shown to catalyze the halide-exchange process leading from [Mo(Cp)Cl2(iPrN=CH-CH=NiPr)] and CH3CH(X)COOEt (X=Br, I) to the mixed-halide complexes [Mo(Cp)ClX(iPrN=CH-CH=NiPr)]. On the other hand, no significant acceleration is observed for the related exchange between [MoX3(PMe3)3] (X=Cl, I) and PhCH(Br)CH3, by analogy to a previous report dealing with the Ru(II) complex [RuCl2(PPh3)3]. A DFT computation study, carried out on the model complexes [Mo(Cp)Cl2(PH3)2], [MoCl3(PH3)3], and [RuCl2(PH3)3], and on the model initiators CH3CH(Cl)COOCH3, CH3Cl, and CH3Br, reveals that the 16-electron Ru(II) complex is able to coordinate the organic halide RX in a slightly exothermic process to yield saturated, diamagnetic [RuCl2(PH3)3(RX)] adducts. The 15-electron [MoCl3(PH3)3] complex is equally capable of forming an adduct, that is, the 17-electron [MoCl3(PH3)3(CH3Cl)] complex with a spin doublet configuration, although the process is endothermic, because it requires an energetically costly electron-pairing process. The interaction between the 17-electron [Mo(Cp)Cl2(PH3)2] complex and CH3Cl, on the other hand, is repulsive and does not lead to a stable 19-electron adduct. The [RuCl2(PH3)3(CH3X)] system leads to an isomeric complex [RuClX(PH3)3(CH3Cl)] by internal nucleophilic substitution at the carbon atom. The transition state of this process for X=Cl (degenerate exchange) is located at lower energy than the transition state required for halogen-atom transfer leading to [RuCl3(PH3)3] and the free radical CH3. On the basis of these results, the uncatalyzed halide exchange is interpreted as the result of a competitive S(N)i process, whose feasibility depends on the electronic configuration of the transition-metal complex. The catalytic action of Al(OiPr)3 on atom-transfer radical polymerization (and on halide exchange for the 17-electron half-sandwich Mo(III) complex) results from a more favorable Lewis acid-base interaction with the oxidized metal complex, in which the transferred halogen atom is bound to a more electropositive element. This conclusion derives from DFT studies of the model [Al(OCH3)3]n (n=1,2,3,4) compounds, and on the interaction of Al(OCH3)3 with CH3Cl and with the [Mo(Cp)Cl3(PH3)2] and [RuCl3(PH3)3] complexes.  相似文献   

14.
The positive ion chemistry occurring within an ion trap mass spectrometer upon electron ionization of 1-bromo-1-chloro-2,2,2-trifluoroethane, the important anaesthetic halothane, has been mapped by means of collision-induced decomposition and ion/molecule self-reaction experiments. Ionized halothane (M+*) reacts with neutral halothane to form the ionized olefin [ClBrC=CF2]+*. via HF elimination. Among the ionic fragments, [M-Br]+ and [M-F]+ react with halothane via chloride abstraction while [M-Cl]+ is unreactive under the same experimental conditions. Substituted methyl cations CHFX+ and CF2X+ (X = F, Cl, Br) undergo halide transfer processes, their reactivity being highest for X = F. Ionized carbenes CXY+ (X,Y = F,F; H,Br; H,Cl; H,F) react with halothane to form CClXY+ and CBrXY+, whereas CF+ inserts into the C-Cl bond to form CF3+ and CClF2+. Finally, Br+ and Cl+ react with halothane by charge transfer. Collision-induced dissociation experiments disclosed interesting rearrangements involved in the dissociations of +CHX-CF3 ions (X = Br, Cl), which undergo fluorine migration and elimination of CF2, as already observed for +CCl2-CF3 in a previous investigation.  相似文献   

15.
Anharmonic and related constants have been calculated for CH2Cl2, CD2Cl2, and CHDCl2 by using the program Gaussian03 and B3LYP and MP2 models. Bases used were 6-311++G** and cc-pVTZ. The size of grid used in the B3LYP/6-311++G** model had a noticeable effect on resulting data. Features of the MP2/6-311++G** calculations suggested a deleterious effect of the absence of f functions in this basis set. The need for the replacement of second-order terms in the perturbation theory formulas for the vibrational anharmonic constants x ij in the presence of Fermi resonance was explored, and minor resonances were found associated with the cubic constants varphi 122 and varphi 299 (d 0 isotopomer), phi122 and phi849 (d2), and phi278 (d1). Computed xij values for nuCH and nuCD motions agree quite well with earlier experimental data. Observed anharmonic frequencies, nu obsd, were corrected to "observed" harmonic frequencies, omega obsd, by using computed differences Delta = omegaQC-nuQC. These differences Delta are larger for the antisymmetric nuasCH2 mode than for symmetric nusCH2 motion. This fact made it necessary to use differing scale factors for the two kinds of CH stretching force constants in a subsequent scaling of the harmonic force field to nuobsd. Force field scaling was also carried out by refining to omega obsd. In both approaches, the B3LYP models required differing scale factors for symmetric and antisymmetric CCl stretching force constants, indicating a failure to compute an accurate C-Cl stretch-stretch interaction force constant. The MP2/cc-pVTZ force field was preferred. Both scaled and unscaled harmonic force fields were used to calculate centrifugal distortion constants (CDCs) and contributions to the vibrational dependence of the rotational constants (alphas). Variations in the CDCs can, in part, be explained by the magnitudes of the frequencies used in the scaling process.  相似文献   

16.
We use a combination of crossed laser-molecular beam scattering experiments and velocity map imaging experiments to investigate the three primary photodissociation channels of chloroacetone at 193 nm: C-Cl bond photofission yielding CH(3)C(O)CH(2) radicals, C-C bond photofission yielding CH(3)CO and CH(2)Cl products, and C-CH(3) bond photofission resulting in CH(3) and C(O)CH(2)Cl products. Improved analysis of data previously reported by our group quantitatively identifies the contribution of this latter photodissociation channel. We introduce a forward convolution procedure to identify the portion of the signal, derived from the methyl image, which results from a two-step process in which C-Cl bond photofission is followed by the dissociation of the vibrationally excited CH(3)C(O)CH(2) radicals to CH(3) + COCH(2). Subtracting this from the total methyl signal identifies the methyl photofragments that result from the CH(3) + C(O)CH(2)Cl photofission channel. We find that about 89% of the chloroacetone molecules undergo C-Cl bond photofission to yield CH(3)C(O)CH(2) and Cl products; approximately 8% result in C-C bond photofission to yield CH(3)CO and CH(2)Cl products, and the remaining 2.6% undergo C-CH(3) bond photofission to yield CH(3) and C(O)CH(2)Cl products.  相似文献   

17.
[VO2F(L-L)] (L-L = 2,2'-bipyridyl, 1,10-phenanthroline, Me2N(CH2)2NMe2) and [VO2F(py)2] (py = pyridine) have been prepared from the corresponding [VOF3(L-L)] or [VOF3(py)2] and O(SiMe3)2 in MeCN solution. VO2F (itself made from VOF3 and O(SiMe3)2 in MeCN) forms [Me4N][VO2F2] with [Me4N]F, but does not react with neutral N- or O-donor ligands. VO2Cl, prepared from VOCl3 and ozone, reacts with 2,2'-bipyridyl or 1,10-phenanthroline to form [VO2Cl(L-L)], with pyridine or pyridine-N-oxide (L) to produce [VO2Cl(L)2], and with OPPh3 or OAsPh3 (L') gives [VO2Cl(L')]. A second product from the OPPh3 system is the ionic [VO2(OPPh3)3][VO2Cl2] containing a trigonal bipyramidal cation. Neither VO2F nor VO2Cl form isolable complexes with MeCN, thf or MeO(CH2)2OMe, and both are reduced by P-, As-, S- or Se-donor ligands. [Ph4As][VO2X2] (X = F or Cl) react with 2,2'-bipyridyl to form [VO2X(2,2'-bipyridyl)], but similar reactions with weaker O-donor ligands fail. The complexes have been characterised by IR, multinuclear NMR (1H, 19F, 51V or 31P) and UV-visible spectroscopy. X-ray crystal structures are reported for [VO2F(py)2], [VO2Cl(L)2] (L = py or pyNO) and [VO2(OPPh3)3][VO2Cl2].  相似文献   

18.
The energetics of the C-F, C-Cl, C-Br, and C-I bonds in 2-haloethanols was investigated by using a combination of experimental and theoretical methods. The standard molar enthalpies of formation of 2-chloro-, 2-bromo-, and 2-iodoethanol, at 298.15 K, were determined as Delta(f)H(degree)m(CH2CH2OH, l) = -315.5 +/- 0.7 kJ.mol-1, Delta(f)H(degree)mBrCH2CH2OH, l) = -275.8 +/- 0.6 kJ.mol-1, Delta(f)H(degree)m(ICH2CH2OH, l) = -207.3 +/- 0.7 kJ.mol-1, by rotating-bomb combustion calorimetry. The corresponding standard molar enthalpies of vaporization, Delta(vap)H(degree)m(ClCH2CH2OH) = 48.32 +/- 0.37 kJ.mol-1, Delta(vap)H(degree)m(BrCH2CH2OH) = 54.08 +/- 0.40 kJ.mol-1, and Delta(vap)H(degree)m(ICH2CH2OH) = 57.03 +/- 0.20 kJ.mol-1 were also obtained by Calvet-drop microcalorimetry. The condensed phase and vaporization enthalpy data lead to Delta(f)H(degree)m(ClCH2CH2OH, g) = -267.2 +/- 0.8 kJ.mol-1, Delta(f)H(degree)m(BrCH2CH2OH, g) = -221.7 +/- 0.7 kJ.mol-1, and Delta(f)H(degree)m(ICH2CH2OH, g) = -150.3 +/- 0.7 kJ.mol-1. These values, together with the enthalpy of selected isodesmic and isogyric gas-phase reactions predicted by density functional theory (B3LYP/cc-pVTZ) and CBS-QB3 calculations were used to derive the enthalpies of formation of gaseous 2-fluoroethanol, Delta(f)H(degree)m(FCH2CH2OH, g) = -423.6 +/- 5.0 kJ.mol-1, and of the 2-hydroxyethyl radical, Delta(f)H(degree)m(CH2CH2OH, g) = -28.7 +/- 8.0 kJ.mol-1. The obtained thermochemical data led to the following carbon-halogen bond dissociation enthalpies: DHo(X-CH2CH2OH) = 474.4 +/- 9.4 kJ.mol-1 (X = F), 359.9 +/- 8.0 kJ.mol-1 (X = Cl), 305.0 +/- 8.0 kJ.mol-1 (X = Br), 228.7 +/- 8.1 kJ.mol-1 (X = I). These values were compared with the corresponding C-X bond dissociation enthalpies in XCH2COOH, XCH3, XC2H5, XCH=CH2, and XC6H5. In view of this comparison the computational methods mentioned above were also used to obtain Delta(f)H(degree)m-594.0 +/- 5.0 kJ.mol-1 from which DHo(F-CH2COOH) = 435.4 +/- 5.4 kJ.mol-1. The order DHo(C-F) > DHo(C-Cl) > DHo(C-Br) > DHo(C-I) is observed for the haloalcohols and all other RX compounds. It is finally concluded that the major qualitative trends exhibited by the C-X bond dissociation enthalpies for the series of compounds studied in this work can be predicted by Pauling's electrostatic-covalent model.  相似文献   

19.
Density functional theory calculations have been used to model the reaction of C6F6 with [IrMe(PEt3)3], which proceeds with both C-F and P-C bond activation to yield trans-[Ir(C6F5)(PEt3)2(PEt2F)], C2H4, and CH4 (Blum, O.; Frolow, F.; Milstein, D. J. Chem. Soc., Chem. Commun. 1991, 258). Using a model species, trans-[IrMe(PH3)2(PH2Et)], a low-energy mechanism involving nucleophilic attack of the electron-rich Ir metal center at C6F6 with displacement of fluoride has been identified. A novel feature of this process is the capture of fluoride by a phosphine ligand to generate a metallophosphorane intermediate [Ir(C6F5)(Me)(PH3)2(PH2EtF)]. These events occur in a single step via a 4-centered transition state, in a process that we have termed "phosphine-assisted C-F activation". Alternative mechanisms based on C-F activation via concerted oxidative addition or electron-transfer processes proved less favorable. From the metallophosphorane intermediate the formation of the final products can be accounted for by facile ethyl group transfer from phosphorus to iridium followed by beta-H elimination of ethene and reductive elimination of methane. The interpretation of phosphine-assisted C-F activation in terms of nucleophilic attack is supported by the reduced activation barriers computed with the more electron-rich model reactant trans-[IrMe(PMe3)2(PMe2Et)] and the higher barriers found with lesser fluorinated arenes. Reactivity patterns for a range of fluoroarenes indicate the dominance of the presence of ortho-F substituents in promoting phosphine-assisted C-F activation, and an analysis of the charge distribution and transition state geometries indicates that this process is controlled by the strength of the Ir-aryl bond that is being formed.  相似文献   

20.
We use a combination of crossed laser-molecular beam experiments and velocity map imaging experiments to investigate the primary photofission channels of chloroacetone at 193 nm; we also probe the dissociation dynamics of the nascent CH(3)C(O)CH(2) radicals formed from C-Cl bond fission. In addition to the C-Cl bond fission primary photodissociation channel, the data evidence another photodissociation channel of the precursor, C-C bond fission to produce CH(3)CO and CH(2)Cl. The CH(3)C(O)CH(2) radical formed from C-Cl bond fission is one of the intermediates in the OH + allene reaction en route to CH(3) + ketene. The 193 nm photodissociation laser allows us to produce these CH(3)C(O)CH(2) radicals with enough internal energy to span the dissociation barrier leading to the CH(3) + ketene asymptote. Therefore, some of the vibrationally excited CH(3)C(O)CH(2) radicals undergo subsequent dissociation to CH(3) + ketene products; we are able to measure the velocities of these products using both the imaging and scattering apparatuses. The results rule out the presence of a significant contribution from a C-C bond photofission channel that produces CH(3) and COCH(2)Cl fragments. The CH(3)C(O)CH(2) radicals are formed with a considerable amount of energy partitioned into rotation; we use an impulsive model to explicitly characterize the internal energy distribution. The data are better fit by using the C-Cl bond fission transition state on the S(1) surface of chloroacetone as the geometry at which the impulsive force acts, not the Franck-Condon geometry. Our data suggest that, even under atmospheric conditions, the reaction of OH with allene could produce a small branching to CH(3) + ketene products, rather than solely producing inelastically stabilized adducts. This additional channel offers a different pathway for the OH-initiated oxidation of such unsaturated volatile organic compounds, those containing a C=C=C moiety, than is currently included in atmospheric models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号