首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
首次报道了用355 nm脉冲激光沉积非晶态Ni-V2O5复合薄膜电极的电化学性能.采用不同摩尔比的NixV2O5 靶(x=0.1,0.3,0.5),在不同的基片温度(Ts)和O2气压力下制备了Ni-V2O5复合薄膜.XRD 和SEM测定表明, 在不锈钢基片上, Ts=300℃和氧气压力为14 Pa沉积0.5 h得到的是非晶态的Ni-V2O5薄膜.将此非晶态的Ni0.3V2O5薄膜电极用于锂电池的正极,与纯V2O5薄膜相比,不仅具有良好的放电速率性能和高的比容量,而且其充放电循环稳定性优异.该薄膜电极在放电速率为20 C时测得的比容量达200 mAh/g,并经1000次以上的充放电循环无明显的衰减.  相似文献   

2.
V(2)O(5) x nH(2)O xerogel films with n = 1.6, 0.6, and 0.3 have been prepared from the sol-gel route by reacting V(2)O(5) with H(2)O(2) followed by drying under ambient conditions and thermal annealing at 110 and 250 degrees C, respectively. After dehydration, V(2)O(5) crystallizes at 300-330 degrees C, as revealed by thermal gravimetric analysis and X-ray diffraction. Electrochemical characterization demonstrated that V(2)O(5) x 0.3H(2)O film exhibits the best Li(+) intercalation performance, with an initial capacity of 275 mAh/g and a stabilized capacity of 185 mAh/g under a high current density of 100 microA/cm(2) after 50 cycles. Under a low current density of 10 microA/cm(2), the capacity of this film can reach 390 mAh/g. Such an enhanced electrochemical property by thermal treatment is ascribed to the reduced water content, the retained interlayer spacing, and the dominant amorphous phase in the film.  相似文献   

3.
Nanotube arrays of amorphous vanadium pentoxide (V(2)O(5)) were synthesized via template-based electrodeposition, and its electrochemical properties were investigated for Li-ion intercalation applications. The nanotubes have a length of 10 microm, outer diameter of 200 nm and inner diameter of 100 nm. Electrochemical analyses demonstrate that the V(2)O(5) nanotube array delivers a high initial capacity of 300 mAh/g, about twice that of the electrochemically prepared V(2)O(5) film. Although the V(2)O(5) nanotube array shows a more drastic degradation than the film under electrochemical redox cycles, the nanotube array reaches a stabilized capacity of 160 mAh/g, which remains about 1.3 times the stabilized capacity of the film.  相似文献   

4.
V2O5 thin films were successfully prepared on ITO substrate with electrophoresis deposition (EDP) through V2O5 sol. X-ray diffraction and scanning electron microscopy were used for studying the structure of the films. The optical and electrochemical properties were measured by the transmittance spectra and cyclic voltammetry measurements, respectively. It is found that V2O5 thin films deposited by EDP are a compact microstructure with finer adhesive force with ITO substrate and the thickness is uniform. During the cycle experiment, the films exhibited reversible two-color (yellow at oxidation and green at reduction) with a maximum transmittance change of around 30%. Moreover, the films had an excellent cycle for lithium intercalation/deintercalation and good cycle stability, the cycle efficiency for the 50th cycle was 88.02% and the films still had fine adhesive force with ITO substrate with no dissolving over more than 50 cycles. The Li+ diffusion coefficient in V2O5 thin film was 5.10×10-12 cm2/s by the electrochemical impedance spectra method. All results indicate that V2O5 thin films by the electrophoresis deposition may be suitable for the use in the electrochromic devices.  相似文献   

5.
Platelet- and fibrillar-structured V2O5 films have been prepared by solution methods, and their electrochemical Li+ intercalation properties have been studied. Platelet film consists of 20-30 nm sized V2O5 particles with random orientation, whereas fibrillar film is comprised of randomly oriented fibers though most of them protrude from the substrate surface. These platelet- and fibrillar-structured films exhibit relatively larger surface area and shorter diffusion path for Li+ intercalation than plain thin film structure. The processing methods, the discharge capacity, and cyclic performance of these films are compared with those of the conventional plain structured film.  相似文献   

6.
Porous V(2)O(5) nanotubes, hierarchical V(2)O(5) nanofibers, and single-crystalline V(2)O(5) nanobelts were controllably synthesized by using a simple electrospinning technique and subsequent annealing. The mechanism for the formation of these controllable structures was investigated. When tested as the cathode materials in lithium-ion batteries (LIBs), the as-formed V(2)O(5) nanostructures exhibited a highly reversible capacity, excellent cycling performance, and good rate capacity. In particular, the porous V(2)O(5) nanotubes provided short distances for Li(+)-ion diffusion and large electrode-electrolyte contact areas for high Li(+)-ion flux across the interface; Moreover, these nanotubes delivered a high power density of 40.2?kW?kg(-1) whilst the energy density remained as high as 201?W?h?kg(-1), which, as one of the highest values measured on V(2)O(5)-based cathode materials, could bridge the performance gap between batteries and supercapacitors. Moreover, to the best of our knowledge, this is the first preparation of single-crystalline V(2)O(5) nanobelts by using electrospinning techniques. Interestingly, the beneficial crystal orientation provided improved cycling stability for lithium intercalation. These results demonstrate that further improvement or optimization of electrochemical performance in transition-metal-oxide-based electrode materials could be realized by the design of 1D nanostructures with unique morphologies.  相似文献   

7.
Functionalized multiwalled carbon nanotubes (CNTs) are coated with a 4-5 nm thin layer of V(2)O(5) by controlled hydrolysis of vanadium alkoxide. The resulting V(2)O(5)/CNT composite has been investigated for electrochemical activity with lithium ion, and the capacity value shows both faradaic and capacitive (nonfaradaic) contributions. At high rate (1 C), the capacitive behavior dominates the intercalation as 2/3 of the overall capacity value out of 2700 C/g is capacitive, while the remaining is due to Li-ion intercalation. These numbers are in agreement with the Trasatti plots and are corroborated by X-ray photoelectron spectroscopy (XPS) studies on the V(2)O(5)/CNTs electrode, which show 85% of vanadium in the +4 oxidation state after the discharge at 1 C rate. The cumulative high-capacity value is attributed to the unique property of the nano V(2)O(5)/CNTs composite, which provides a short diffusion path for Li(+)-ions and an easy access to vanadium redox centers besides the high conductivity of CNTs. The composite architecture exhibits both high power density and high energy density, stressing the benefits of using carbon substrates to design high performance supercapacitor electrodes.  相似文献   

8.
Enhancement of intercalation properties of V2O5 film by TiO2 addition   总被引:1,自引:0,他引:1  
Although it is well-known that TiO2 incorporation can greatly improve the cyclic stability of V2O5, the influences of TiO2 addition on the Li+ intercalation properties of V2O5 remain an issue of debate in literature. In this paper, we report on a systematic investigation of the preparation and intercalation properties of V2O5-TiO2 mixture films. The present work demonstrates that high Li+ intercalation rates and capacity in V2O5 films are achievable with TiO2 addition. For example, the addition of 20 mol % Ti into V2O5 polycrystalline demonstrated an approximated 100% improvement in Li+ intercalation performance as compared to single V2O5 electrodes. Such enhancement in intercalation properties of V2O5 films with TiO2 addition was attributed to changes in microstructure, crystallinity, and also a possible lattice structure and interaction force between adjacent layers in V2O5.  相似文献   

9.
锂离子电池阴极材料尖晶石结构Li1+xMn2—xO4的研究   总被引:29,自引:1,他引:29  
吴晓梅  杨清河 《电化学》1998,4(4):365-371
本文报导尖晶石结构阴极材料Li1+xMn2-xO4(O<x<1)的制备方法,讨论温度及原料对合成材料的电化学特性的影响,用电化学及结构化学理论研究了化学计量尖晶石结构LiMn2O4中,过量锂占据晶格中锰的位置,对电池初始容量及循环寿命产生的影响.  相似文献   

10.
Lithium intercalation into the oxide slabs of the cation-deficient n = 2 Ruddlesden-Popper oxysulfide Y(2)Ti(2)O(5)S(2) to produce Li(x)Y(2)Ti(2)O(5)S(2) (0 < x < 2) is described. Neutron powder diffraction measurements reveal that at low levels of lithium intercalation into Y(2)Ti(2)O(5)S(2), the tetragonal symmetry of the host is retained: Li(0.30(5))Y(2)Ti(2)O(5)S(2), I4/mmm, a = 3.80002(2) A, c = 22.6396(2) A, Z = 2. The lithium ion occupies a site coordinated by four oxide ions in an approximately square planar geometry in the perovskite-like oxide slabs of the structure. At higher levels of lithium intercalation, the symmetry of the cell is lowered to orthorhombic: Li(0.99(5))Y(2)Ti(2)O(5)S(2), Immm, a = 3.82697(3) A, b = 3.91378(3) A, c = 22.2718(2) A, Z = 2, with ordering of Li(+) ions over two inequivalent sites. At still higher levels of lithium intercalation, tetragonal symmetry is regained: Li(1.52(5))Y(2)Ti(2)O(5)S(2), I4/mmm, a = 3.91443(4) A, c = 22.0669(3) A, Z = 2. A phase gap exists close to the transition from the tetragonal to orthorhombic structures (0.6 < x < 0.8). The changes in symmetry of the system with electron count may be considered analogous to a cooperative electronically driven Jahn-Teller type distortion. Magnetic susceptibility and resistivity measurements are consistent with metallic properties for x > 1, and the two-phase region is identified as coincident with an insulator to metal transition.  相似文献   

11.
研究了以泡沫镍载NiCo2O4纳米线阵列为阴极催化剂的Al-H2O2半燃料电池的性能. 以无模板生长法制备了泡沫镍载NiCo2O4纳米线阵列阴极材料, SEM测定结果表明, NiCo2O4纳米线几乎垂直于泡沫镍载体表面生长. 以电压和功率密度-电流密度曲线研究了H2O2浓度、电解液流速和温度对电池性能的影响, 结果显示, 以铝片为阳极, 0.6 mol/L H2O2为氧化剂的电池的开路电压约为1.40 V; 在室温和57 ℃下, 电流密度为98和172 mA/cm2时, 最大功率密度分别达到79和120 mW/cm2.  在5000 s的测试时间内, 0.70 V的恒电流密度和75 mA/cm2 的恒电压值几乎为一常数, 这表明以泡沫镍载NiCo2O4纳米线阵列为催化剂电还原H2O2具有很好的活性、稳定性和传质性能.  相似文献   

12.
In this work the electronic structure of V(2)O(5), reduced V(2)O(5-x) (V(16)O(39)) and sodium intercalated NaV(2)O(5) has been studied by both theoretical and experimental methods. Theoretical band structure calculations have been performed using density functional methods (DFT). We have investigated the electron density distribution of the valence states, the total density of states (total DOS) and the partial valence band density of states (PVBDOS). Experimentally, amorphous V(2)O(5) thin films have been prepared by physical vapour deposition (PVD) on freshly cleaved highly oriented pyrolytic graphite (HOPG) substrates at room temperature with an initial oxygen understoichiometry of about 4%, resulting in a net stoichiometry of V(2)O(4.8). These films have been intercalated by sodium using vacuum deposition with subsequent spontaneous intercalation (NaV(2)O(5)) at room temperature. Resonant V3p-V3d photoelectron spectroscopy (ResPES) experiments have been performed to determine the PVBDOS focusing on the calculation of occupation numbers and the determination of effective oxidation state, reflecting ionicity and covalency of the V-O bonds. Using X-ray absorption near edge spectra (XANES) an attempt is made to visualize the changes in the unoccupied DOS due to sodium intercalation. For comparison measurements on nearly stoichiometric V(2)O(5) single crystals have been performed. The experimental data for the freshly cleaved and only marginally reduced V(2)O(5) single crystals and the NaV(2)O(5) results are in good agreement with the calculated values. The ResPES results for V(2)O(4.8) agree in principle with the calculations, but the trends in the change of the ionicity differ between experiment and theory. Experimentally we find partly occupied V 3d states above the oxygen 2p-like states and a band gap between these and the unoccupied states. In theory one finds this occupation scheme assuming oxygen vacancies in V(2)O(5) and by performing a spin-polarized calculation of an antiferromagnetic ordered NaV(2)O(5.).  相似文献   

13.
We report on the synthesis, characterization, and electrochemical lithium intercalation of alpha-CuV2O6 nanowires, mesowires, and microrods that were prepared through a facile hydrothermal route. The diameters of the as-synthesized alpha-CuV2O6 nanowires, mesowires, and microrods were about 100 nm, 400 nm, and 1 microm, respectively. It was found that by simply controlling the hydrothermal reaction parameters, such as the reagent concentration and the dwell time, the transformation of microrods to nanowires was readily achieved via a "ripening-splitting" mechanism. Electrochemical measurements revealed that the as-prepared alpha-CuV2O6 nanowires and mesowires displayed high discharge capacities (447-514 mAh/g at 20 mA/g and 37 degrees C) and excellent high-rate capability. In particular, the alpha-CuV2O6 nanowires showed capacities much higher than those of alpha-CuV2O6 mesowires, microrods, and bulk particles. The mechanisms for the electrochemical lithium intercalation into the alpha-CuV2O6 nanowires were also discussed. From the Arrhenius plot of lithium intercalation into alpha-CuV2O6 nanowires, the activation energies were calculated to be 39.3 kJ/mol at 2.8 V (low lithium uptake) and 35.7 kJ/mol at 2.3 V (high lithium uptake). This result indicates that the alpha-CuV2O6 nanowires are promising cathode candidates for primary lithium batteries used in long-term implantable cardioverter defibrillators (ICD).  相似文献   

14.
以无模板生长法制备了泡沫镍载NiCo2O4纳米线正极材料, XRD和SEM表征结果表明, 所得材料为NiCo2O4纳米线, 以循环伏安法和计时电流法研究了泡沫镍载NiCo2O4纳米线对H2O2电还原的催化性能. 结果显示, 在0.4 mol/L H2O2 和 3.0 mol/L NaOH 溶液中, 当电压为-0.4 V(vs. Ag/AgCl)时, 循环伏安的电流密度达到125 mA/cm2; 当电压为-0.2, -0.3和 -0.4 V 时, 在30 min 的测试时间内, 计时电流密度几乎均为一常数, 表明以泡沫镍载NiCo2O4纳米线为催化剂电还原H2O2具有很高的活性和很好的稳定性.  相似文献   

15.
Lithium-excess manganese layered oxides, which are commonly described by the chemical formula zLi(2)MnO(3)-(1-z)LiMeO(2) (Me = Co, Ni, Mn, etc.), are of great importance as positive electrode materials for rechargeable lithium batteries. In this Article, Li(x)Co(0.13)Ni(0.13)Mn(0.54)O(2-δ) samples are prepared from Li(1.2)Ni(0.13)Co(0.13)Mn(0.54)O(2) (or 0.5Li(2)MnO(3)-0.5LiCo(1/3)Ni(1/3)Mn(1/3)O(2)) by an electrochemical oxidation/reduction process in an electrochemical cell to study a reaction mechanism in detail before and after charging across a voltage plateau at 4.5 V vs Li/Li(+). Changes of the bulk and surface structures are examined by synchrotron X-ray diffraction (SXRD), X-ray absorption spectroscopy (XAS), X-ray photoelectron spectroscopy (XPS), and time-of-flight secondary ion mass spectroscopy (SIMS). SXRD data show that simultaneous oxygen and lithium removal at the voltage plateau upon initial charge causes the structural rearrangement, including a cation migration process from metal to lithium layers, which is also supported by XAS. This is consistent with the mechanism proposed in the literature related to the Li-excess manganese layered oxides. Oxygen removal associated with the initial charge on the high voltage plateau causes oxygen molecule generation in the electrochemical cells. The oxygen molecules in the cell are electrochemically reduced in the subsequent discharge below 3.0 V, leading to the extra capacity. Surface analysis confirms the formation of the oxygen containing species, such as lithium carbonate, which accumulates on the electrode surface. The oxygen containing species are electrochemically decomposed upon second charge above 4.0 V. The results suggest that, in addition to the conventional transition metal redox reactions, at least some of the reversible capacity for the Li-excess manganese layered oxides originates from the electrochemical redox reaction of the oxygen molecules at the electrode surface.  相似文献   

16.
The 'composite' layered materials for lithium-ion batteries have recently attracted great attention owing to their large discharge capacities. Here, the 0.5Li(2)MnO(3)·0.5LiMn(0.42)Ni(0.42)Co(0.16)O(2)'composite' layered manganese-rich material is prepared and characterized by the synchrotron X-ray powder diffraction (SXPD). The relationship between its electrochemical performance and its 'composite' components, the Li(2)MnO(3) phase activation process during cycling and the cycle stability of this material at room temperature are elucidated based on its kinetic controlled electrochemical properties, dQ/dV curves and Raman scattering spectroscopies associated with different initial charge-discharge current densities (5 mA g(-1), 20 mA g(-1) and 50 mA g(-1)), cut-off voltages (4.6 V and 4.8 V) and cycle numbers (50 cycles and 150 cycles). Furthermore, its reaction pathways are tracked via a firstly introduced integrated compositional phase diagram of four components, Li(2)MnO(3), LiMn(0.42)Ni(0.42)Co(0.16)O(2), MO(2) (M = Mn(1-α-β)Ni(α)Co(β); 0 ≤α≤ 5/12, 0 ≤β≤ 1/6) and LiMnO(2), which turns out to be a very important guiding tool for understanding and utilizing this 'composite' material.  相似文献   

17.
We report on the process of lithium intercalation in V2O5 thin films deposited onto standard ITO‐coated glass substrates. The films were deposited via a well‐established sol–gel route, and the samples were examined as working electrodes in a range of potentials versus lithium reference electrode. This paper follows up issues arising from parallel spectroscopic characterizations of the films by X‐ray photoelectron spectroscopy (XPS). Specifically, the XPS examination showed that not all of the Li‐ion charge inserted was accounted for by the V(5) to V(4) reduction, but the stoichiometric balance could be maintained only by considering additional oxygens arising from the intercalation procedure, leading to Li2O formation. In this work, we have examined the possibility that the source of oxygen is the ITO substrate. To this purpose, films of V2O5 deposited on silicon substrates have been prepared using the sol–gel process and examined by XPS after electrochemical intercalation/de‐intercalation cycles. We show that in this case a perfect balance between electrochemical charge, inserted Li and reduced vanadium is obtained. A further indication of ITO‐substrate effects was obtained from examination, by the same methods, of some unconventional V2O5 films that had been co‐precipitated with a siloxane, designed to provide a template structure. The results obtained from this material imply that a barrier layer is formed at the ITO interface and, therefore, the formation of Li2O is avoided. The results are discussed in terms of the possible degradation of conventional V2O5 on ITO as a result of electrochemically induced interface reactions. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

18.
The cathode in rechargeable lithium-ion batteries operates by conventional intercalation; Li+ is extracted from LiCoO2 on charging accompanied by oxidation of Co3+ to Co4+; the process is reversed on discharge. In contrast, Li+ may be extracted from Mn4+-based solids, e.g., Li2MnO3, without oxidation of Mn4+. A mechanism involving simultaneous Li and O removal is often proposed. Here, we demonstrate directly, by in situ differential electrochemical mass spectrometry (DEMS), that O2 is evolved from such Mn4+ -containing compounds, Li[Ni(0.2)Li(0.2)Mn(0.6)]O2, on charging and using powder neutron diffraction show that O loss from the surface is accompanied by diffusion of transition metal ions from surface to bulk where they occupy vacancies created by Li removal. The composition of the compound moves toward MO(2). Understanding such unconventional Li extraction is important because Li-Mn-Ni-O compounds, irrespective of whether they contain Co, can, after O loss, store 200 mAhg(-1) of charge compared with 140 mAhg(-1) for LiCoO(2).  相似文献   

19.
Li(x)Mg(0.1)Ni(0.4)Mn(1.5)O(4) spinel (P4(3)32) was chemically and electrochemically lithiated in the range 1 < x 相似文献   

20.
A compact PbS quantum-dot thin film was prepared using the combination of TiO2 nanorod arrays and 1, 2-ethanedithiol following the spin-coating assisted successive ionic layer absorption and reaction procedure. Solar cells with the novel structure of FTO/compact PbS quantum-dot thin film sensitized TiO2 nanorod arrays/spiro-OMeTAD/Au were assembled. Subsequently, the influence of the length of TiO2 nanorod arrays on the photovoltaic performance of all-solid-state compact PbS quantum-dot thin film sensitized solar cells was evaluated. The corresponding solar cells having TiO2 nanorod array lengths of 290, 540, and 1040 nm achieved photoelectric conversion efficiencies (PCE) of 2.02%, 4.81%, and 1.95%, respectively. These results reveal that in order to achieve high PCE values with the all-solid-state quantum dot sensitized solar cells, it is very important to balance the hole diffusion length with the loading amount of quantum-dots.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号