首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Single crystals of CuxAg1−x InS2 solid solutions are grown by the moving solvent method. The compositions and structures of the single crystals are determined. The thermal expansion coefficients of these crystals are determined with a dilatometer. The thermal expansion coefficients are found to vary linearly with concentration x. The thermal conductivity of the crystals is measured by the absolute method, and the concentration dependence of the thermal conductivity is constructed. This dependence is shown to have a minimum near the equimolar composition.  相似文献   

2.
The ionic Seebeck coefficients of Cu2?δSe superionic conductors are measured in the temperature range 340–380°C. The data obtained are used to determine the heat of transfer Q i of copper ions as a function of the degree of nonstoichiometry and the temperature. The heat of transfer of copper cations increases from 0.19 to 0.22 eV as the degree of nonstoichiometry δ increases from 0.015 to 0.050. It is noted that the heat of transfer Q i tends to increase with an increase in the temperature. Assumptions regarding the specific features of the cation diffusion in the Cu2?δSe superionic conductors are made from the observed closeness of the heat of transfer and the activation energy for ionic conduction.  相似文献   

3.
The enthalpy of the subsystem of silver ions in the intercalation compounds Ag x TiS2 has been calculated from the electrochemically measured thermodynamic functions of the silver subsystem. The ionic conductivity and the coupled chemical diffusion coefficients for silver in the intercalation compound have been measured. The activation energy for diffusion of silver ions is determined and the obtained value is interpreted from analyzing the concentration dependence of the enthalpy of the ionic subsystem. The conclusion has been drawn that the high diffusion mobility is associated with the competition between the covalent and elastic interactions, which decreases the activation energy for diffusion of ions.  相似文献   

4.
Films of Mn1−x Fe x Se (x = 0–0.45) solid solutions were flash-sputtered. We measured the transmission spectra of the films in the wavelength range 200–1000 nm at room temperature. From these spectra, we calculated the absorption coefficients and determined the fundamental absorption edge, the position of which is shifted from 2.65 eV in MnSe to 2.30 eV in solid solutions of compositions x = 0.20–0.45. __________ Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 74, No. 1, pp. 136–138, January–February, 2007.  相似文献   

5.
We present time-resolved photoelectron spectra of mass-selected Ag2O2 anions. The anions are photoexcited by photons with an energy of 3.1 eV, and photoelectron spectra of the excited species Ag2O2 - * and the subsequently appearing fragments are recorded using a probe laser pulse with a photon energy of 1.5 eV. The excited state of Ag2O2 - has a short lifetime of 130 fs±70 fs only and decays by direct photodesorption of O2. The data demonstrate the ability of time-resolved photoelectron spectroscopy (TR-PES) to observe the breaking of chemical bonds if the decay process of the excited state is direct (non-thermal desorption). The data are compared to recent results of a NeNePo experiment [1] on the same system. PACS 68.43.Tj; 78.47.+p; 33.80.Eh; 36.40.-c  相似文献   

6.
The equilibrium and photoinduced absorption spectra of copper-and silver-doped Bi12SiO20 crystals are studied. It is demonstrated that the impurity absorption is due to Ag2+, Ag+, Cu3+, Cu2+, and Cu+ ions occupying almost octahedral Bi3 positions. A mechanism of photochromism is suggested, involving changes in the charge states of copper and silver impurity ions according to schemes Cu2+-e → Cu3+ and Ag+-e → Ag2+.  相似文献   

7.
The decay path of an Ag8(O2)- cluster photoexcited by a 3.1 eV photon is elucidated using time-resolved photoelectron spectroscopy. Photoabsorption results in the formation of an excited state giving rise to a peak in the photoelectron spectra with well-resolved vibrational finestructure. With a lifetime of about 100 fs this bound state decays into an anti-bonding state which dissociates into O2 and Ag8- on a timescale of 10 ps. In the photoelectron spectra, this corresponds to a broad maximum shifting gradually towards higher binding energy while the O2 and Ag8- separate. Finally, the spectrum of bare Ag8- appears. This process is unique to small clusters, because on metal surfaces excited state lifetimes are too short to allow for direct dissociation.  相似文献   

8.
The photoelectric characteristics of Pb0.975Sn0.025Se solid solution films prepared by the hydrochemical codeposition of PbSe and SnSe with the subsequent heat treatment in air at 573–700 K have been investigated. The thermal and optical band gaps, the temperature coefficient of the optical band gap, the dark resistance, the volt-watt sensitivity, and the range of spectral sensitivity have been determined in the temperature range of 220–300 K. It has been found that, after heat treatment below 573 K, the films of the Pb0.975Sn0.025Se solid solutions possess metallic conductivity, while being heat treated at elevated temperatures, they become semiconductors with p-type conductivity. The composition of the solid solution is independent of the heat treatment temperature; it is formed during deposition.  相似文献   

9.
Non-stoichiometric Cu2ZnSnS4 nanoparticles with average diameters of 4–15 nm and quasi-polyhedral shape were successfully synthesized by a colloidal method. We found that a non-stoichiometric composition of Zn to Cu in Cu2ZnSnS4 nanoparticles yielded a correlation where Zn content increased with a decrease in Cu content, suggesting formation of lattice defects relating to Cu and Zn, such as a Cu vacancy (VCu), antisite with Zn replacing Cu (ZnCu), and/or defect cluster of VCu and ZnCu. The bandgap energy of Cu2ZnSnS4 nanoparticles systematically varies between 1.56 and 1.83 eV depending on the composition ratios of Cu and Zn, resulting in a wider bandgap for Cu-deficient Cu2ZnSnS4 nanoparticles. These characteristics can be ascribed to the modification in electronic band structures due to formation of VCu and ZnCu on the analogy of ternary copper chalcogenide, chalcopyrite CuInSe2, in which the top of the valence band shifts downward with decreasing Cu contents, because much like the structure of CuInSe2, the top of the valence band is composed of a Cu 3d orbital in Cu2ZnSnS4.  相似文献   

10.
Optical properties of thin Cu2ZnSnS4 films produced by RF magnetron sputtering of preliminarily synthesized material are studied. Transmission and reflection coefficients are studied in a range from 0.4 to 26 μm. The optical band-gap width depending on substrate temperature is estimated; in optimal modes, it is equal to 1.47 eV. The study of electrical properties shows that Cu2ZnSnS4 possesses low charge-carrier mobility, μ = 1.9 cm2/(V s), at room temperature and hole concentration р = 5 × 1018 cm–3. Electron microscopy shows that the film possesses a polycrystalline structure with a crystallite size on the order of 100 nm.  相似文献   

11.
Thin films of Cu(In, Ga)Se2 (CIGS) with a Ga/(Ga + In) ratio of ~0.27 corresponding to the standard elemental composition for solar-energy transducers were grown on Mo-coated glass substrates by the Cu, In, Ga, and Se co-evaporation technique from different sources. Transmission (T), photoluminescence (PL), and photoluminescence excitation (PLE) spectra at 4.2 K were used to analyze electronic properties in the asgrown and electron-irradiated CIGS films. The band-gap energy (Eg) of the CIGS films measured using both transmission and PLE methods was found to be about 1.28 eV at 4.2 K. Two deep bands in the PL spectra of the irradiated CIGS films, P1 at ~0.91 eV and P2 at ~0.77 eV, have been detected. These bands are tentatively associated with copper atoms substituting indium (CuIn) and indium vacancies VIn, respectively, as the simplest radiation-induced defects.  相似文献   

12.
The temperature dependence of the Hall coefficient of a single crystal of the p-Sb2Te2.9Se0.1 solid solution grown by the Czochralski technique is studied in the temperature range 77–450 K. The data on the Hall coefficient of the p-Sb2Te2.9Se0.1 are analyzed in combination with the data on the Seebeck and Nernst–Ettingshausen effects and the electrical conductivity with allowance for interband scattering. From an analysis of the temperature dependences of the four kinetic coefficients, it follows that, at T < 200 K, the experimental data are qualitatively and quantitatively described in terms of the one-band model. At higher temperatures, a complex structure of the valence band and the participation of the second-kind additional carriers (heavy holes) in the kinetic phenomena should be taken into account. It is shown that the calculations of the temperature dependences of the Seebeck and Hall coefficients performed in the two-band model agree with the experimental data with inclusion of the interband scattering when using the following parameters: effective masses of the density of states of light holes md1*≈ 0.5m0 (m0 is the free electron mass) and heavy holes md2*≈ 1.4m0, the energy gap between the main and the additional extremes of the valence band ΔEv ≈ 0.14 eV that is weakly dependent on temperature.  相似文献   

13.
The oxidation kinetics of Bi1.3Pb0.8Sr2Ca0.8Y0.2Cu2O8+δ solid solutions at different temperatures and \(p_{O_2 } = 0.21\) atm is investigated by thermogravimetry. The results obtained are compared with the previously studied oxidation kinetics of Bi1.3Pb0.8Sr2Ca0.8Y0.2Cu2O8+δ solid solutions. It is found that the substitution of yttrium for calcium leads to an appreciable retardation of the initial oxidation stage associated with the oxygen diffusion. The phonon spectra of the solid solutions are examined using inelastic neutron scattering on a DIN-2PI direct-geometry spectrometer. The high-frequency (>50 meV) phonon densities of states for yttrium-containing and yttrium-free solid solutions are analyzed. The possible model is proposed for a correlation between the differences observed in the high-frequency phonon densities of states attributed to the vibrations of oxygen atoms and the differences in the oxidation kinetics of the solid solutions under consideration.  相似文献   

14.
A new preparation method for CuInS2 and CuInSe2 nanoparticles synthesis is described without using any organic solvent. Heating Cu, In, and S/Se precursors dissolved in water for 30 min in a microwave oven in the presence of mercapto-acetic acid leads to monodispersed chalcopyrite nanoparticles. No precipitation of these nanoparticles is observed after several months at room temperature. These new materials have been thoroughly characterized to confirm their compositions, sizes, and structure without any filtration. Transmission electron microscopy (TEM) confirmed particle sizes below 5 nm. Energy dispersive X-ray analysis (EDXA) confirmed the chemical composition of these samples. X-ray diffraction (XRD) showed a chalcopyrite-type structure with crystallite size of about 2 nm. No difference has been observed between batch and continuous synthesis processes. Cu x InS2 and Cu x InSe2 nanoparticles, with x < 1, have been also synthesized and identified. Simulation using a commercial software confirmed the difference between copper poor (Cu x InS2) and copper rich (CuInS2) chalcopyrite structures. Conventional spray deposition techniques have been used to form relatively thin films on solid substrates.  相似文献   

15.
Lithium ionic conductivity and spin-lattice relaxation rates were measured in Li8ZrO6 and Li6Zr2O7 solid electrolytes. It was found that the Li8ZrO6 solid electrolyte undergoes a transition to the superionic state in the temperature range 673–703 K. It was shown that Li+ ions are mobile in particular lattice positions of the Li6Zr2O7 phase, and that ionic conductivity is monotonic at an activation energy of 79.4 kJ/mol.  相似文献   

16.
The effect thermal treatment in a vacuum has on the thermoelectric properties of Sb0.9Bi1.1Te2.9Se0.1 solid solution thin films obtained via ion-beam sputtering in an argon atmosphere is considered. It is established that the specific resistance and thermopower are determined by the type and concentration of intrinsic point defects of the Sb0.9Bi1.1Te2.9Se0.1 solid solution. The power factor values are found to be comparable to those of nanostructured materials based on (Bi,Sb)2(Te,Se)3 solid solutions.  相似文献   

17.
The self-diffusion (D0) and isotope diffusion (D*) coefficients of oxygen in YBa2Cu3O6+x are calculated as functions of the temperature (600–1200 K) and the oxygen content (0<x<1). The Monte Carlo simulation is performed with due regard for both the interaction of oxygen ions at lattice sites in the basal planes of YBa2Cu3O6+x and the interaction between a jumping ion at a saddle point and the environment. Equilibrium thermodynamic characteristics (including the phase diagram and the heat capacity) are calculated in terms of the Hamiltonian of interaction between oxygen ions at the lattice sites. It is found that an increase in the oxygen content leads to a decrease in the diffusion coefficients D0 and D*, an increase in the effective activation energies for diffusion by 0.3–0.5 eV, and a decrease in the Haven ratio from 1 to ~0.5.  相似文献   

18.
Various dissociation channels of silver bromide cluster ion Ag2Br+ and silver cluster ion Ag3 + were observed in high-energy collisionally-activated dissociation (CAD) using a Cs target. The fragment patterns of the high-energy CAD were compared with those of the metastable dissociation and low-energy CAD. The difference in the fragment patterns between the high-energy CAD and the other dissociation methods was explained in terms of the internal energy distributions. The dissociation mechanisms of neutral silver bromide cluster Ag2Br and silver cluster Ag3 were also investigated by charge inversion mass spectrometry using the Cs target. While the fragment ions AgBr- and Ag2 - were dominantly observed in the charge inversion spectrum of Ag2Br+, the undissociated ion Ag3 - was observed as a predominant peak in the case of Ag3 +. The dissociation behavior of Ag2Br* can be explained on the basis of the calculated thermochemical data. Contrary to this, the predominant existence of the undissociated Ag3 - cannot be explained by the reported thermochemical data. The existence of undissociated Ag3 - suggests that the dissociation barrier is higher than the internal energy of Ag3 * (theoretical: 1.03 eV, experimental: 2.31 eV) estimated from the ionization potentials of Ag3 and Cs.  相似文献   

19.
The conditions of synthesizing a new Ag6SnS4Br2 compound were studied. The crystallographic parameters of the unit cell were determined as follows: space group Pnma, a=6.67050(10) Å, b=7.82095(9) Å, c=23.1404(3) Å, and Z=4. The total electrical conductivity and its ionic component were measured by a dc probe method in the temperature range 210–380 K. Kinks in the conductivity curve and the differential thermogram of heating the alloy were revealed at 235 K. It was concluded that the mass and charge transfers in the compacted Ag6SnS4Br2 alloy powder have an intragrain character.  相似文献   

20.
This letter discusses the thermoelectric properties of Cu3PSe4 and Cu3PS4 compounds, using the Ab initio calculations. These compounds are predicted to be good thermoelectric materials thanks to the nature of their band edge states. Seebeck coefficient of Cu3PSe4 exhibits a maximum value of 1256 µV/K at roopm temperature, whereas it is 2389 µV/K for Cu3PS4. Furthermore, the electrical conductivity is significantly enhanced with doping level while the electronic thermal conductivity is weakly increased. Besides, the factor of merit of these compounds shows a value around the unity only at low doping levels. Hence, this predicts that these compounds may present excellent thermoelectric properties, therefore they could be considered as alternatives for thermoelectric applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号