首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The trust region problem, minimization of a quadratic function subject to a spherical trust region constraint, occurs in many optimization algorithms. In a previous paper, the authors introduced an inexpensive approximate solution technique for this problem that involves the solution of a two-dimensional trust region problem. They showed that using this approximation in an unconstrained optimization algorithm leads to the same theoretical global and local convergence properties as are obtained using the exact solution to the trust region problem. This paper reports computational results showing that the two-dimensional minimization approach gives nearly optimal reductions in then-dimension quadratic model over a wide range of test cases. We also show that there is very little difference, in efficiency and reliability, between using the approximate or exact trust region step in solving standard test problems for unconstrained optimization. These results may encourage the application of similar approximate trust region techniques in other contexts.Research supported by ARO contract DAAG 29-84-K-0140, NSF grant DCR-8403483, and NSF cooperative agreement DCR-8420944.  相似文献   

2.
This paper presents a new class of methods for solving unconstrained optimization problems on parallel computers. The methods are intended to solve small to moderate dimensional problems where function and derivative evaluation is the dominant cost. They utilize multiple processors to evaluate the function, (finite difference) gradient, and a portion of the finite difference Hessian simultaneously at each iterate. We introduce three types of new methods, which all utilize the new finite difference Hessian information in forming the new Hessian approximation at each iteration; they differ in whether and how they utilize the standard secant information from the current step as well. We present theoretical analyses of the rate of convergence of several of these methods. We also present computational results which illustrate their performance on parallel computers when function evaluation is expensive.Research supported by AFOSR grant AFOSR-85-0251, ARO contract DAAG 29-84-K-0140, NSF grant DCR-8403483, and NFS cooperative agreement DCR -8420944.  相似文献   

3.
The nonsymmetric Lanczos algorithm reduces a general matrix to tridiagonal by generating two sequences of vectors which satisfy a mutual bi-orthogonality property. The process can proceed as long as the two vectors generated at each stage are not mutually orthogonal, otherwise the process breaks down. In this paper, we propose a variant that does not break down by grouping the vectors into clusters and enforcing the bi-orthogonality property only between different clusters, but relaxing the property within clusters. We show how this variant of the matrix Lanczos algorithm applies directly to a problem of computing a set of orthogonal polynomials and associated indefinite weights with respect to an indefinite inner product, given the associated moments. We discuss the close relationship between the modified Lanczos algorithm and the modified Chebyshev algorithm. We further show the connection between this last problem and checksum-based error correction schemes for fault-tolerant computing.The research reported by this author was supported in part by NSF grant CCR-8813493.The research reported by this author was supported in part by ARO grant DAAL03-90-G-0105 and in part by NSF grant DCR-8412314.  相似文献   

4.
Asynchronous Transfer Mode (ATM) has been adopted by the CCITT as the transport mode in which Broadband ISDN will be based. In this paper, we formulate the problem of routing cells in an ATM network as an optimization problem. The objective is to minimize the largest cell loss probability among all links. The constraints correspond to a multicommodity network flow problem with gains. An algorithm to determine a global optimal flow assignment is presented. The minimax routing algorithm was implemented and tested on several sample networks. The computational experiments show that the algorithm is computationally efficient.Supported by NSF grant NCR 92-23148.  相似文献   

5.
In this paper we present anO (log5 n) time parallel algorithm for constructing a Maximal Path in an undirected graph. We also give anO (log1/2+ε) time parallel algorithm for constructing a depth first search tree in an undirected graph. This work was supported in part by an IBM Faculty Development Award, an NSF Graduate Fellowship, and NSF grant DCR-8351757.  相似文献   

6.
We discuss methods for solving the unconstrained optimization problem on parallel computers, when the number of variables is sufficiently small that quasi-Newton methods can be used. We concentrate mainly, but not exclusively, on problems where function evaluation is expensive. First we discuss ways to parallelize both the function evaluation costs and the linear algebra calculations in the standard sequential secant method, the BFGS method. Then we discuss new methods that are appropriate when there are enough processors to evaluate the function, gradient, and part but not all of the Hessian at each iteration. We develop new algorithms that utilize this information and analyze their convergence properties. We present computational experiments showing that they are superior to parallelization either the BFGS methods or Newton's method under our assumptions on the number of processors and cost of function evaluation. Finally we discuss ways to effectively utilize the gradient values at unsuccessful trial points that are available in our parallel methods and also in some sequential software packages.Research supported by AFOSR grant AFOSR-85-0251, ARO contract DAAG 29-84-K-0140, NSF grants DCR-8403483 and CCR-8702403, and NSF cooperative agreement DCR-8420944.  相似文献   

7.
Many constrained optimization algorithms use a basis for the null space of the matrix of constraint gradients. Recently, methods have been proposed that enable this null space basis to vary continuously as a function of the iterates in a neighborhood of the solution. This paper reports results from topology showing that, in general, there is no continuous function that generates the null space basis of all full rank rectangular matrices of a fixed size. Thus constrained optimization algorithms cannot assume an everywhere continuous null space basis. We also give some indication of where these discontinuities must occur. We then propose an alternative implementation of a class of constrained optimization algorithms that uses approximations to the reduced Hessian of the Lagrangian but is independent of the choice of null space basis. This approach obviates the need for a continuously varying null space basis.Research supported by NSF grant MCS 81-15475 and DCR-8403483Research supported by ARO contracts DAAG 29-81-K-0108 and DAAG 29-84-K-0140  相似文献   

8.
In this paper we show that (n) variables are needed for first-order logic with counting to identify graphs onn vertices. Thek-variable language with counting is equivalent to the (k–1)-dimensional Weisfeiler-Lehman method. We thus settle a long-standing open problem. Previously it was an open question whether or not 4 variables suffice. Our lower bound remains true over a set of graphs of color class size 4. This contrasts sharply with the fact that 3 variables suffice to identify all graphs of color class size 3, and 2 variables suffice to identify almost all graphs. Our lower bound is optimal up to multiplication by a constant becausen variables obviously suffice to identify graphs onn vertices.Research supported by NSF grant CCR-8709818.Research supported by NSF grant CCR-8805978 and Pennsylvania State University Research Initiation grant 428-45.Research supported by NSF grants DCR-8603346 and CCR-8806308.  相似文献   

9.
This paper presents an application of parallel computing techniques to the solution of an important class of planning problems known as generalized networks. Three parallel primal simplex variants for solving generalized network problems are presented. Data structures used in a sequential generalized network code are briefly discussed and their extension to a parallel implementation of one of the primal simplex variants is given. Computational testing of the sequential and parallel codes, both written in Fortran, was done on the CRYSTAL multicomputer at the University of Wisconsin, and the computational results are presented. Maximum efficiency occurred for multiperiod generalized network problems where a speedup approximately linear in the number of processors was achieved.This research was supported in part by NSF grants DCR-8503148 and CCR-8709952 and by AFOSR grant AFOSR-86-0194.  相似文献   

10.
This paper addresses the question of how long it takes for anM/G/1 queue, starting empty, to approach steady state. A coupling technique is used to derive bounds on the variation distance between the distribution of number in the system at timet and its stationary distribution. The bounds are valid for allt. This research was supported in part by a grant from the AT&T Foundation and NSF grant DCR-8351757.  相似文献   

11.
This paper studies the distributed optimization problem, whose aim is to find the global minimizer of the sum of multiple agents’ local nonconvex objective functions in a networked system. To solve such a distributed global optimization problem, we propose a distributed stochastic algorithm and we give detailed analysis of the global convergence of the proposed algorithm.  相似文献   

12.
The low-rank semidefinite programming problem LRSDPr is a restriction of the semidefinite programming problem SDP in which a bound r is imposed on the rank of X, and it is well known that LRSDPr is equivalent to SDP if r is not too small. In this paper, we classify the local minima of LRSDPr and prove the optimal convergence of a slight variant of the successful, yet experimental, algorithm of Burer and Monteiro [5], which handles LRSDPr via the nonconvex change of variables X=RRT. In addition, for particular problem classes, we describe a practical technique for obtaining lower bounds on the optimal solution value during the execution of the algorithm. Computational results are presented on a set of combinatorial optimization relaxations, including some of the largest quadratic assignment SDPs solved to date.This author was supported in part by NSF Grant CCR-0203426.This author was supported in part by NSF Grants CCR-0203113 and INT-9910084 and ONR grant N00014-03-1-0401.  相似文献   

13.
We describe a procedure for determining a few of the largest singular values of a large sparse matrix. The method by Golub and Kent which uses the method of modified moments for estimating the eigenvalues of operators used in iterative methods for the solution of linear systems of equations is appropriately modified in order to generate a sequence of bidiagonal matrices whose singular values approximate those of the original sparse matrix. A simple Lanczos recursion is proposed for determining the corresponding left and right singular vectors. The potential asynchronous computation of the bidiagonal matrices using modified moments with the iterations of an adapted Chebyshev semi-iterative (CSI) method is an attractive feature for parallel computers. Comparisons in efficiency and accuracy with an appropriate Lanczos algorithm (with selective re-orthogonalization) are presented on large sparse (rectangular) matrices arising from applications such as information retrieval and seismic reflection tomography. This procedure is essentially motivated by the theory of moments and Gauss quadrature.This author's work was supported by the National Science Foundation under grants NSF CCR-8717492 and CCR-910000N (NCSA), the U.S. Department of Energy under grant DOE DE-FG02-85ER25001, and the Air Force Office of Scientific Research under grant AFOSR-90-0044 while at the University of Illinois at Urbana-Champaign Center for Supercomputing Research and Development.This author's work was supported by the U.S. Army Research Office under grant DAAL03-90-G-0105, and the National Science Foundation under grant NSF DCR-8412314.  相似文献   

14.
Based on two-grid discretizations, some local and parallel finite element algorithms for the Stokes problem are proposed and analyzed in this paper. These algorithms are motivated by the observation that for a solution to the Stokes problem, low frequency components can be approximated well by a relatively coarse grid and high frequency components can be computed on a fine grid by some local and parallel procedure. One technical tool for the analysis is some local a priori estimates that are also obtained in this paper for the finite element solutions on general shape-regular grids. Y. He was partially subsidized by the NSF of China 10671154 and the National Basic Research Program under the grant 2005CB321703; A. Zhou was partially supported by the National Science Foundation of China under the grant 10425105 and the National Basic Research Program under the grant 2005CB321704; J. Li was partially supported by the NSF of China under the grant 10701001. J. Xu was partially supported by Alexander von Humboldt Research Award for Senior US Scientists, NSF DMS-0609727 and NSFC-10528102.  相似文献   

15.
The fleet assignment problem: Solving a large-scale integer program   总被引:5,自引:0,他引:5  
Given a flight schedule and set of aircraft, the fleet assignment problem is to determine which type of aircraft should fly each flight segment. This paper describes a basic daily, domestic fleet assignment problem and then presents chronologically the steps taken to solve it efficiently. Our model of the fleet assignment problem is a large multi-commodity flow problem with side constraints defined on a time-expanded network. These problems are often severely degenerate, which leads to poor performance of standard linear programming techniques. Also, the large number of integer variables can make finding optimal integer solutions difficult and time-consuming. The methods used to attack this problem include an interior-point algorithm, dual steepest edge simplex, cost perturbation, model aggregation, branching on set-partitioning constraints and prioritizing the order of branching. The computational results show that the algorithm finds solutions with a maximum optimality gap of 0.02% and is more than two orders of magnitude faster than using default options of a standard LP-based branch-and-bound code.This work was supported by NSF and AFORS grant DDM-9115768 and NSF grant SES-9122674.Corresponding author.  相似文献   

16.
LetX be a given set ofn circular and straight line segments in the plane where two segments may interest only at their endpoints. We introduce a new technique that computes the Voronoi diagram ofX inO(n logn) time. This result improves on several previous algorithms for special cases of the problem. The new algorithm is relatively simple, an important factor for the numerous practical applications of the Voronoi diagram.This work was supported by NSF Grants No. DCR-84-01898 and No. DCR-84-01633.  相似文献   

17.
This paper proposes a self-adaptive penalty function and presents a penalty-based algorithm for solving nonsmooth and nonconvex constrained optimization problems. We prove that the general constrained optimization problem is equivalent to a bound constrained problem in the sense that they have the same global solutions. The global minimizer of the penalty function subject to a set of bound constraints may be obtained by a population-based meta-heuristic. Further, a hybrid self-adaptive penalty firefly algorithm, with a local intensification search, is designed, and its convergence analysis is established. The numerical experiments and a comparison with other penalty-based approaches show the effectiveness of the new self-adaptive penalty algorithm in solving constrained global optimization problems.  相似文献   

18.
A new algorithm for solving nonconvex, equality-constrained optimization problems with separable structures is proposed in the present paper. A new augmented Lagrangian function is derived, and an iterative method is presented. The new proposed Lagrangian function preserves separability when the original problem is separable, and the property of linear convergence of the new algorithm is also presented. Unlike earlier algorithms for nonconvex decomposition, the convergence ratio for this method can be made arbitrarily small. Furthermore, it is feasible to extend this method to algorithms suited for inequality-constrained optimization problems. An example is included to illustrate the method.This research was supported in part by the National Science Foundation under NSF Grant No. ECS-85-06249.  相似文献   

19.
提出一个求解带箱子约束的一般多项式规划问题的全局最优化算法, 该算法包含两个阶段, 在第一个阶段, 利用局部最优化算法找到一个局部最优解. 在第二阶段, 利用一个在单位球上致密的向量序列, 将多元多项式转化为一元多项式, 通过求解一元多项式的根, 找到一个比当前局部最优解更好的点作为初始点, 回到第一个 阶段, 从而得到一个更好的局部最优解, 通过两个阶段的循环最终找到问题的全局最优解, 并给出了算法收敛性分析. 最后, 数值结果表明了算法是有效的.  相似文献   

20.
This paper presents an algorithm for global optimization problem whose objective functions is Lipschitz continuous but not necessarily differentiable. The proposed algorithm consists of local and global search procedures which are based on and inspired by quasisecant method, respectively. The aim of the global search procedure is to identify “promising” basins in the search space. Once a promising basin is identified, the search procedure skips from an exhausted area to the obtained basin, and the local search procedure is then applied at this basin. It proves that the proposed algorithm converges to the global minimum solution if the local ones are finite and isolated. The proposed method is tested by academic benchmarks, numerical performance and comparison show that it is efficient and robust. Finally, The method is applied to solve the sensor localization problem.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号