共查询到20条相似文献,搜索用时 15 毫秒
1.
2-Methyl pyrazine (2MP) has led to significant interest for its industrial and pharmaceutical uses. The new vapor–liquid equilibria (VLE) at 353.15 K and excess molar volumes ( VE) at 298.15 K over the whole mole fraction range for seven binaries (water, n-hexane, cyclohexane, n-heptane, methylcyclopentane (MCP), methylcyclohexane (MCH) and ethyl acetate (EA) with 2MP) have been measured. VLE were measured by using headspace gas chromatography and VE were determined using precision density meter. The water+2MP system has only the minimum boiling azeotrope. The experimental VLE and VE data were well correlated in terms of common gE models and Redlich–Kister equation, respectively. 相似文献
2.
Consistent vapor–liquid equilibrium data for the ternary system 1-pentanol–1-propanol–water is reported at 101.3 kPa at temperatures in the range of 362–393 K. The VLE data were satisfactorily correlated with UNIQUAC model. 相似文献
3.
New experimental vapor–liquid equilibrium data of the N 2– n-pentane system were measured over a wide temperature range from 344.3 to 447.9 K and pressures up to 35 MPa. A static-analytic apparatus with visual sapphire windows and pneumatic capillary samplers was used in the experimental measurements. Equilibrium phase compositions and vapor–liquid equilibrium ratios are reported. The new results were compared with those reported by other authors. The comparison showed that the pressure–composition data reported in this work are in good agreement with those determined by others but they are closer to the mixture critical point at each temperature level. The experimental data were modeled with the PR and PC-SAFT equations of state by using one-fluid mixing rules and a single temperature independent interaction parameter. Results of the modeling showed that the PC-SAFT equation fit the data satisfactorily even at the highest temperatures of study. 相似文献
4.
In the present study, an activity coefficient model, based on the concept of local volume fractions and the Gibbs–Helmholtz relation, has been developed. Some modifications were made from Tan–Wilson model (1987) and TK–Wilson model (1975) to represent activity coefficients in mixed solvent–electrolyte systems. The proposed model contains two groups of binary interaction parameters. One group for solvent–solvent interaction parameters corresponds to that given by the TK–Wilson model (1975) in salt-free systems. The other group of salt–solvent interaction parameters can be calculated either from vapor pressure or bubble temperature data in binary salt–solvent systems. It is shown that the present model can also be used to describe liquid–liquid equilibria. No ternary parameter is required to predict the salt effects on the vapor–liquid equilibria (VLE) of mixed solvent systems. By examining 643 sets of VLE data, the calculated results show that the prediction by the present model is as good as that by the Tan–Wilson model (1987), with an overall mean deviation of vapor phase composition of 1.76% and that of the bubble temperature of 0.74 K. 相似文献
5.
Reverse nonequilibrium molecular dynamics in the canonical ensemble and coupled–decoupled configurational-bias Monte Carlo simulations in the Gibbs ensemble were used to predict the low-shear rate Newtonian viscosities and vapor–liquid coexistence curves for 1,2-butanediol, 1,3-butanediol, 1,4-butanediol, 2-methyl-1,3-propanediol, and 1,2,4-butanetriol modeled with the transferable potentials for phase equilibria-united atom (TraPPE-UA) force field. Comparison with available experimental data demonstrates that the TraPPE-UA force field yields very good predictions of the viscosities and vapor–liquid coexistence curves. A detailed analysis of liquid structure and hydrogen bonding is provided. 相似文献
6.
Isobaric vapor–liquid equilibria for the ternary system acetone + methanol + lithium nitrate have been measured at 100 kPa using a recirculating still. The addition of lithium nitrate to the solvent mixture produced an important salting-out effect and the azeotrope tended to disappear for small contents of salt. The experimental data sets were fitted with the electrolyte NRTL model and the parameters of the Mock's model were estimated. These parameters were used to predict the ternary vapor–liquid equilibrium which agreed well with the experimental one. 相似文献
7.
Isothermal vapour–liquid equilibria (VLE), solid–liquid equilibria and excess enthalpies have been measured for the systems cyclohexanone + cyclohexanol and 2-octanone + 1-hexanol. Additionally in this paper binary azeotropic data at different pressures for 1-pentanol + 2-heptanone and 1-hexanol + 2-octanone have been determined with the help of a wire band column. Furthermore activity coefficients at infinite dilution for methanol, ethanol, 1-butanol and 1-propanol in 2-octanone at different temperatures have been measured with the help of the dilutor technique. These data together with literature data for alcohol–ketone systems were used to fit temperature-dependent group interaction parameters for the group contribution method modified UNIFAC (Dortmund) and the group contribution equation of state VTPR. 相似文献
8.
Isothermal vapor–liquid equilibrium (VLE) at 333.15 K and 353.15 K for four binary mixtures of benzene + toluene, benzene + N-methylformamide, toluene + m-xylene and toluene + N-methylformamide have been obtained at pressures ranged from 0 kPa to 101.3 kPa. The NRTL, UNIQUAC and Wilson activity coefficient models have been employed to correlate experimental pressures and liquid mole fractions. The non-ideal behavior of the vapor phase has been considered by using the Soave–Redlich–Kwong equation of state in calculating the vapor mole fraction. Liquid and vapor densities were also measured by using two vibrating tube densitometers. The P– x– y diagram and the activity coefficient indicate that two mixtures of benzene + toluene and toluene + m-xylene were close to the ideal solution. However, two mixtures containing N-methylformamide present a large positive deviation from the ideal solution. The excess Gibbs energy in the benzene + toluene mixture is negative indicates that it is an exothermic system. 相似文献
9.
Isothermal vapor–liquid equilibrium (VLE) and excess enthalpy ( HE) data were measured for binary systems required for the design of reactive distillation processes for the methyl acetate production. The isothermal P– x data were measured with the help of a computer-operated static apparatus. A commercial isothermal flow calorimeter was used for the determination of the heats of mixing. Temperature-dependent interaction parameters for the UNIQUAC model were fitted simultaneously to the experimental data from this work and other authors. 相似文献
10.
Methyl tert-butyl ether (MTBE) is recently widely used in the chemical and petrochemical industry as a non-polluting octane booster for gasoline and as an organic solvent. The isobaric or isothermal vapor–liquid equilibria (VLE) were determined directly for MTBE+C 1–C 4 alcohols. The excess enthalpy ( HE) for butane+MTBE or isobutene+MTBE and excess volume ( VE) for MTBE+C 3–C 4 alcohols were also determined. Besides, the infinite dilute activity coefficient, partial molar excess enthalpies and volumes at infinite dilution ( γ∞, HE,∞, VE,∞) were calculated from measured data. Each experimental data were correlated with various gE models or empirical polynomial. 相似文献
11.
Vapor pressure of methyl glycolate and the binary isothermal vapor–liquid equilibrium of ethylene glycol and methyl glycolate were measured by using static method. The experimental data was correlated with the Wilson and NRTL activity coefficient models. Good agreement between the experimental data and model is achieved. 相似文献
12.
Phase equilibrium in binary ethanol mixtures found in alcoholic beverage production has been analyzed using a cubic equation of state (EoS) and suitable mixing and combining rules. The main objective of the study is the accurate modeling of the congener concentration in the vapor phase (substances different from ethanol), considered to be an important enological parameter in the alcohol industry. The Peng–Robinson (PR) equation of state has been used and the Wong–Sandler (WS) mixing rules, that include a model for the excess Gibbs free energy, have been incorporated into the equation of state constants. In the Wong–Sandler mixing rules the van Laar (VL) model for the excess Gibbs energy has been used. This combination of equations of state, mixing rules and combining rules are commonly applied to high pressure phase equilibrium and have not yet been treated in a systematic way to complex low pressure ethanol mixtures as done in this work. Nine binary ethanol + congener mixtures have been considered for analysis. Comparison with available literature data is done and the accuracy of the calculations is discussed, concluding that the model used is accurate enough for engineering applications. 相似文献
13.
Isothermal vapor–liquid equilibrium (VLE) data for diethylamine(1)+acetone(2) and diethylamine(1)+acetonitrile(2) binary systems were obtained at 323.15 K by dynamic method. Excess molar volumes at 298.15 K for these systems were measured by a dilution dilatometer. VLE data have been checked for thermodynamic consistency and correlated by Wilson, NRTL and UNIQUAC equations. UNIFAC group interaction parameters for CH 2NH---CH 3CO and CH 2NH---CH 3CN pairs are also obtained from the experimental VLE data. 相似文献
14.
The modeling of liquid–vapor equilibrium in ternary mixtures that include substances found in alcoholic distillation processes of wine and musts is analyzed. In particular, vapor–liquid equilibrium in ternary mixtures containing water + ethanol + cogener has been modeled using parameters obtained from binary mixture data only. The congeners are substances that although present in very low concentrations, of the order of part per million, 10 −6 to 10 −4 mg/L, are important enological parameters [1] and [2]. In this work two predictive models, the PSRK equation of state and the UNIFAC liquid phase model and two semipredictive activity coefficient models: NRTL and UNIQUAC have been used. The results given by these different models have been compared with literature data and conclusions about the accuracy of the models studied are drawn, recommending the best models for correlating and predicting the phase equilibrium in this type of mixtures. 相似文献
15.
The vapor–liquid equilibria of binary polymer–solvent systems was modeled using the Non-Random Hydrogen Bonding (NRHB) model. Mixtures of poly(ethylene glycol), poly(propylene glycol), poly(vinyl alcohol) and poly(vinyl acetate) with various solvents were investigated, while emphasis was put on hydrogen bonding systems, in which functional groups of the polymer chain can self-associate or cross-associate with the solvent molecules. Effort has been made to explicitly account for all hydrogen bonding interactions. The results reveal that the NRHB model offers a flexible approach to account for various self- or cross-associating interactions. In most cases model's predictions (using no binary interaction parameter kij = 0) and model's correlations (using one temperature independent binary interaction parameter, kij ≠ 0) are in satisfactory agreement with the experimental data, despite the complexity of the examined systems. 相似文献
16.
Isothermal bubble and dew points, saturated molar volumes, and mixture critical points for binary mixtures of carbon dioxide+chloroform (trichloromethane) (CO 2/CHCl 3) have been measured in the temperature region 303.15–333.15 K and at pressures up to 100 bar. Mixture critical points are reported at 313.15, 323.15, and 333.15 K. The data were modeled with the Peng–Robinson equation of state using both the van der Waals-1 (vdW-1) mixing rule and the Wong–Sandler (WS) mixing rule incorporating the UNIQUAC excess free energy model. The WS mixing rule provided a better representation of the data than did the vdW-1 mixing rule, though with three adjustable parameters instead of one. The extrapolating ability of both of the mixing rules was investigated. Using the parameters regressed at 323.15 K, the WS mixing rule yielded better extrapolations for the composition dependence at 303.15, 313.15, and 333.15 K than the vdW-1 mixing rule. 相似文献
18.
A large number of equations of state and activity coefficient models capable of describing phase equilibria in polymer solutions are available today, but only a few of these models have been applied to different systems. It is therefore useful to investigate the performance of existing thermodynamic models for complex polymer solutions which have not yet been widely studied. The present work studies the application of several activity coefficient models [P.J. Flory, Principles of Polymer Chemistry, Cornell University Press, New York, NY, 1953; T. Oishi, J.M. Prausnitz, Estimation of solvent activities in polymer solutions using a group-contribution method, Ind. Eng. Chem. Process Design Dev. 17 (1978) 333; H.S. Elbro, A. Fredenslund, P. Rasmussen, A new simple equation for the prediction of solvent activities in polymer solutions, Macromolecules 23 (1990) 4707; G.M. Kontogeorgis, A. Fredenslund, D. Tassios, Simple activity coefficient model for the prediction of solvent activities in polymer solutions, Ind. Eng. Chem. Res. 32 (1993) 362; C. Chen, A segment-based local composition model for the Gibbs energy of polymer solutions, Fluid Phase Equilib. 83 (1993) 301; A. Vetere, Rules for predicting vapor–liquid equilibria of amorphous polymer solutions using a modified Flory–Huggins equation, Fluid Phase Equilib. 97 (1994) 43; C. Qian, S.J. Mumby, B.E. Eichinger, Phase diagrams of binary polymer solutions and blends, Macromolecules 24 (1991) 1655; Y.C. Bae, J.J. Shim, D.S. Soane, J.M. Prausnitz, Representation of vapor–liquid and liquid–liquid equilibria for binary systems containing polymers: applicability of an extended Flory–Huggins equation, J. Appl. Polym. Sci. 47 (1993) 1193; G. Bogdanic, J. Vidal, A segmental interaction model for liquid–liquid equilibrium calculations for polymer solutions, Fluid Phase Equilibria 173 (2000) 241] and activity coefficient from equations of state [F. Chen, A. Fredenslund, P. Rasmussen, Group-contribution Flory equation of state for vapor–liquid equilibria en mixtures with polymers, Ind. Eng. Chem. Res. 29 (1990) 875; M.S. High, R.P. Danner, Application of the group contribution lattice—fluids EOS to polymer solutions, AIChE J. 36 (1990) 1625]. The evaluation of these models was carried out both at infinite dilution and at finite concentrations and the results compared to experimental data. Furthermore, liquid–liquid equilibrium predictions for binary polymer solutions using six activity coefficient models are compared in this work. The parameters were estimated for all the models to achieve the best possible representation of the reported experimental equilibrium behavior. 相似文献
19.
Molecular simulation results using the exponential-6 intermolecular potential are reported for the phase behaviour of the atomic binary mixtures of neon+xenon, helium+neon, helium+argon and helium+xenon. These binary mixtures exhibit both vapour–liquid and liquid–liquid phase equilibria up to very high pressures. Comparison with experiment indicates good overall agreement. The results indicate that the exponential-6 intermolecular potential is a useful generic potential for molecular simulation. 相似文献
20.
A theoretical analysis of the accuracy of the volumetric method for the determination of liquid–liquid equilibrium was carried out. The results show that, under certain conditions, this method can be used to investigate systems showing relatively small mutual solubilities. Relations were derived to estimate standard deviations of the equilibrium compositions determined by the volumetric method. In the experimental part of the work, an apparatus for measurements of mutual solubilities of liquids was constructed. A procedure that enabled us to determine precisely volumes of liquid phases was developed. This procedure and apparatus present the advantage that relatively small amounts of samples are required (approximately 2 × 20 ml). Theoretical conclusions concerning the applicability of the volumetric method were checked by measuring mutual solubilities at 303.15 K in systems methylcyclohexane + N,N-dimethylformamide, 1-butanol + water and dimethyl phthalate + water. Further, the method was used to measure systematically the liquid–liquid equilibrium in systems ethyl acetate + ethylene glycol and phenyl acetate + ethylene glycol at temperatures from 293 to 323 K. Data for these systems were acquired by means of other methods as well and a good agreement was observed on comparison. 相似文献
|