首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
至今还未见到用通常的应力函数和位移函数分析三维有限变形弹性问题的报导。利用Hasegawa的工作和Adkins的摄动法,本文将位移函数用于求解表面力或体积力作用下的有限变形轴对称弹性问题,提出一个分析可压缩和不可压缩材料三维弹性问题的新的解析法,并用两个简单例子验证了这种分析方法。  相似文献   

2.
Using the hypersingular integral equation method based on body force method, a planar crack in a three-dimensional transversely isotropic piezoelectric solid under mechanical and electrical loads is analyzed. This crack problem is reduced to solve a set of hypersingular integral equations. Compare with the crack problems in elastic isotropic materials, it is shown that for the impermeable crack, the intensity factors for piezoelectric materials can be obtained from those for elastic isotropic materials. Based on the exact analytical solution of the singular stresses and electrical displacements near the crack front, the numerical method of the hypersingular integral equation is proposed by the finite-part integral method and boundary element method, which the square root models of the displacement and electric potential discontinuities in elements near the crack front are applied. Finally, the numerical solutions of the stress and electric field intensity factors of some examples are given.  相似文献   

3.
Piece-wise homogeneous three-dimensional deformations in incompressible materials in finite elasticity are considered. The emergence of discontinuous strain fields in incompressible materials is studied via singularity theory. Since the simplest singularities, including Maxwell’s sets, are the cusp singularities, cusp conditions for the total energy function of homogeneous deformations for incompressible materials in finite elasticity will be derived, compatible with strain jumping. The proposed method yields simple criteria for the study of discontinuous deformations in three-dimensional problems and for any homogeneous incompressible material. Furthermore the homogeneous stress tensor is also not restricted. Neither fictitious nor simplified constitutive relations are invoked. The theory is implemented in a simple shearing problem.  相似文献   

4.
Experimental data for simple tension suggest that there is a power–law kinematic relationship between the stretches for large classes of slightly compressible (or almost incompressible) non-linearly elastic materials that are homogeneous and isotropic. Here we confine attention to a particular constitutive model for such materials that is of generalized Varga type. The corresponding incompressible model has been shown to be particularly tractable analytically. We examine the response of the slightly compressible material to some nonhomogeneous deformations and compare the results with those for the corresponding incompressible model. Thus the effects of slight compressibility for some basic nonhomogeneous deformations are explicitly assessed. The results are fundamental to the analytical modeling of almost incompressible hyperelastic materials and are of importance in the context of finite element methods where slight compressibility is usually introduced to avoid element locking due to the incompressibility constraint. It is also shown that even for slightly compressible materials, the volume change can be significant in certain situations.   相似文献   

5.
The elastic interaction of spherical particles is studied. The distribution of the stress, normal to the contact plane, is determined by the rod model suggested recently, which is applicable in the more wide range of deformations as compared with the classical Hertz law. In the rod model context an inner part of compressed particles is regarded as an elastic cylindrical rod, which radius is equal to the contact radius. The rod reaction is added to the normal particle interaction corresponding with the Hertz solution. The resulting normal force passes into the Hertz solution for infinitesimal deformations and gives stronger particle repulsion for finite deformations. Here we solve the Mindlin problem for the rod model, i.e., derive the tangential interaction of initially compressed particles when a relative displacement takes place. The analytical expressions, which determine the total displacement of the sphere’s centers and the corresponding tangential force, are derived. So, the generalization of the classical Mindlin law is obtained for the rod model.  相似文献   

6.
层合结构压电器件的机电耦合响应   总被引:1,自引:0,他引:1  
压电传感嚣和致动器都可以看成是由压电材料层和非压电(弹性)材料层交替铺设而成。对于这类任意铺设的层合板悬臂梁结构,推导出了表示力学变形与外加电场之间耦合效应的解析表达式。进而,又推导出了两类(一类为单层压电-弹性层。另一类为双层压电-弹性层)层合型悬臂梁结构机电耦合性能的解析公式。在该机电耦合模型中,包括了两个压电常数d211和d222。最后。通过比较解析解、实验值以及有限元计算结果,发现它们吻合得很好。  相似文献   

7.
压电传感器和致动器都可以看成是一种复合材料层合板结构,由压电材料层和非压电(弹性)材料层交替铺设而成。对于这类任意铺设的层合板悬臂梁结构,我们推导出了表示力学变形与外加电场之间耦合效应的解析表达式。进而,又推导出了两类(一类为单层压电-弹性层,另一类为双层压电-弹性层)层合型悬臂梁结构机电耦合性能的解析公式。在该机电耦合模型中,包括了两个压电常数d211和d222。此外,还建立了含压电材料的有限元算式,进行了实验测量。最后,通过比较解析解(包括考虑了d222参数的理论值和没有考虑d222参数的理论值),实验值以及有限元计算结果,发现它们吻合得很好,而且考虑d222是十分必要的。  相似文献   

8.
A constitutive model in finite viscoelasticity   总被引:1,自引:0,他引:1  
A new constitutive model is suggested for the viscoelastic behavior of rubber-like materials at finite strains. The model treats a viscoelastic medium as a system with a variable number of purely elastic links, which can arise and collapse due to micro-Brownian motion of molecules.Assuming that the processes of birth and death for elastic links are independent of stresses, we obtain operator linear constitutive equations in finite viscoelasticity. According to this model, elastic and viscous effects may be distinguished and described independently of each other by a relaxation measure and a strain energy density.The potential energy of deformations is assumed to depend on the principal invariants of the relative Finger tensor of strains. Unlike the standard approach, we do not suggest any expression for the strain energy densitya priori, but suppose that this function is presented as a sum of two functions of one variable which are found by fitting experimental data.The proposed approach allows results of several experiments (uniaxial tension, biaxial tension, and torsion) for styrene butadiene rubber and butyl rubber to be predicted correctly.  相似文献   

9.
Two displacement formulation methods are presented for problems of planar anisotropic elasticity. The first displacement method is based on solving the two governing partial differential equations simultaneously/ This method is a recapitulation of the orignal work of Eshelby, Read and Shockley [7] on generalized plane deformations of anisotropic elastic materials in the context of planar anisotropic elasticity.The second displacement method is based on solving the two governing equations separately. This formulation introduces a displacement function, which satisfies a fourth-order partial differential equation that is identical in the form to the one given by Lekhnitskii [6] for monoclinic materials using a stress function. Moreover, this method parallels the traditional Airy stress function method and thus the Lekhnitskii method for pure plane problems. Both the new approach and the Airy stress function method start with the equilibrium equations and use the same extended version of Green's theorem (Chou and Pagano [13], p. 114; Gao [11]) to derive the expressions for stress or displacement components in terms of a potential (stress or displacement) function (see also Gao [10, 11]). It is therefore anticipated that the displacement function involved in this new method could also be evaluated from measured data, as was done by Lin and Rowlands [17] to determine the Airy stress function experimentally.The two different displacement methods lead to two general solutions for problems of planar anisotropic elasticity. Although the two solutions differ in expressions, both of the depend on the complex roots of the same characteristic equation. Furthermore, this characteristic equation is identical to that obtained by Lekhnitskii [6] using a stress formulation. It is therefore concluded that the two displacement methods and Lekhnitskii's stress method are all equivalent for problems of planar anisotropic elasticity (see Gao and Rowlands [8] for detailed discussions).  相似文献   

10.
In this paper, an analytical solution is developed to determine deformations and stresses in circular disks made of functionally graded materials subjected to internal and/or external pressure. Taking mechanical properties of the materials of circular disks to be linear variations, the governing equation is derived from basic equations of axisymmetric, plane stress problems in elasticity. By transforming the governing equation into a hypergeometric equation, an accurate analytical solution of deformations and stresses in circular disks is obtained. The comparison with the numerical solution indicates that both approaches give very agreeable results, indicating correctness of the proposed analytical solution. The obtained analytical solution is employed to determine the radial displacement and stresses in circular disks subjected to external pressure, internal pressure, and internal and external pressure, respectively. How the radius ratio of circular disks affects deformations and stresses is also investigated.  相似文献   

11.
For illustrative purposes this paper treats a special problem in the theory of finite deformations of elastic materials whose associated displacement equations of equilibrium do not remain elliptic at all strains. The typical deformation arising in this problem possesses a discontinuous gradient, so that quasi-static motions involving such equilibrium states may be dissipative. For a special class of such “non-elliptic” elastic materials, it is shown that the macroscopic response in the problem treated may be precisely of the form associated with elastic—perfectly plastic behavior. The counterparts of yield, plastic strain and plastic strain rate are determined by the underlying elastic strain energy function.  相似文献   

12.
This paper examines the class of problems related to the interaction between a finitely deformed incompressible elastic halfspace and contacting elements that include smooth, flat rigid indenters with elliptical and circular shapes and a thick plate of infinite extent. The contact between the finitely deformed elastic halfspace and the contacting elements is assumed to be bilateral. The interaction between both the rigid circular indenter and the finitely deformed halfspace is induced by a Mindlin force that acts at the interior of the halfspace regions and by exterior loads. Similar considerations apply for the contact between the flexible plate of infinite extent and the finitely deformed elastic halfspace. The theory of small deformations superposed on large deformations proposed by Green et al. (Proc R Soc Ser A 211:128–155, 1952) is used as the basis for the formulation of the problem, and results of potential theory and integral transform techniques are used to develop the analytical results. In particular, explicit results are presented for the displacement of the rigid elliptical indenter and the maximum deflection of the flexible plate induced by the Mindlin forces, when the finitely deformed halfspace region has a strain energy function of the Mooney–Rivlin form.  相似文献   

13.
This study used a hybrid analytical and numerical method to analyze three-dimensional (3D) elastic bodies with sharp-V notches. The proposed method separates the 3D equilibrium equation into primary and shadow parts, where the solution of the primary part is the analytical solution under the generalized plane-strain theory, and the shadow part is solved numerically using a weak form based on the finite element theory. A least-squares method is then used to find the multiplication factors of these primary and shadow modes using 3D finite element results. Numerical simulations indicate that the proposed method can accurately simulate the singularities near a sharp V-notch. The major advantage of this method is that a 3D whole displacement field with the singular effect based on the theoretical solution near the notch can be obtained for anisotropic materials under arbitrary loads.  相似文献   

14.
基于维尔斯特拉斯多项式函数的逼近定理,通过DDA高阶全多项式位移函数条件下的弹性力学推导,提出了一个逼近弹性力学连续位移函数真解的全多项式位移函数逼近方法。该方法采用完整的高阶多项式位移函数,以不同阶次条件下的多项式系数为未知数,以单纯形积分为解析积分方法,通过建立和求解平衡方程,逐步逼近弹性体真解。在对单纯形积分计算过程研究的基础上,给出了三维空间单纯形计算图解法,该图解法诠释了三维空间单纯形积分公式中各变量间的逻辑关系及计算过程的图形表达。基于上述方法,编写了相应计算程序,并以一个三维简支梁受均布荷载及一个四周固定的弹性薄板受集中力作用两算例为实例,验证了所提方法的可行性。实例计算结果表明,随着逼近函数阶次的提高,数值方法获得的多项式函数计算值均单调地逐步逼近解析解。在文中所用的6阶多项式函数逼近中,简支梁实例位移计算误差小于0.2%,弹性薄板实例位移误差小于0.91%,并且,两算例与解析解位移差值都在微m级。  相似文献   

15.
We investigate sandwich composite beams using a direct approach which models slender bodies as deformable curves endowed with a certain microstructure. We derive general formulas for the effective stiffness coefficients of composite elastic beams made of several non-homogeneous materials. A special attention is given to sandwich beams with foam core, which are made of functionally graded or piecewise homogeneous materials. In the case of small deformations, the theoretical predictions are compared with experimental measurements for the three-point bending of sandwich beams, showing a very good agreement. For functionally graded sandwich columns we obtain the analytical solutions of bending, torsion and extension problems and compare them with numerical results computed by the finite element method.  相似文献   

16.
In this paper we consider exact solutions for plane and axisymmetric deformations for a class of compressible elastic materials we call coharmonic. The coharmonic materials are derived from the harmonic materials by using Shield's inverse deformation theorem. The governing equations for the coharmonic material show the same kind of simplification associated with the harmonic materials. The equations reduce to first-order linear equations depending on an arbitrary harmonic function. They are intractable in general, so various ansätze are investigated. Boundary value problems for the coharmonic materials are compared with the same problems for harmonic materials. For certain boundary value problems, the harmonic materials exhibit well-known problematic behaviour which limits their use as models of material behaviour. The corresponding solutions for the coharmonic materials do not display these non-physical features.  相似文献   

17.
In this paper the fully nonlinear theory of finite deformations of an elastic solid is used to study the elastostatic field near the tip of a crack. The special elastic materials considered are such that the differential equations governing the equilibrium fields may lose ellipticity in the presence of sufficiently severe strains.The first problem considered involves finite anti-plane shear (Mode III) deformations of a cracked incompressible solid. The analysis is based on a direct asymptotic method, in contrast to earlier approaches which have depended on hodograph procedures.The second problem treated is that of plane strain of a compressible solid containing a crack under tensile (Mode I) loading conditions. The materials is characterized by the so-called Blatz-Ko elastic potential. Again, the analysis involves only direct local considerations.for both the Mode III and Mode I problems, the loss of equilibrium ellipticity results in the appearance of curves (elastostatic shocks) issuing from the crack-tip across which displacement gradients and stresses are discontinuous.The results communicated in this paper were obtained in the course of an investigation supported by Contract N00014-75-C-0196 with the Office of Naval Research.  相似文献   

18.
Many composite materials, including biological tissues, are modeled as non-linear elastic materials reinforced with elastic fibers. In the current paper, the full set of dynamic equations for finite deformations of incompressible hyperelastic solids containing a single fiber family are considered. Finite-amplitude wave propagation ansätze compatible with the incompressibility condition are employed for a generic fiber family orientation. Corresponding non-linear and linear wave equations are derived. It is shown that for a certain class of constitutive relations, the fiber contribution vanishes when the displacement is independent of the fiber direction.Point symmetries of the derived wave models are classified with respect to the material parameters and the angle between the fibers and the wave propagation direction. For planar shear waves in materials with a strong fiber contribution, a special wave propagation direction is found for which the non-linear wave equations admit an additional symmetry group. Examples of exact time-dependent solutions are provided in several physical situations, including the evolution of pre-strained configurations and traveling waves.  相似文献   

19.
The purpose of this research is to further investigate the effects of material inhomogeneity and the combined effects of material inhomogeneity and anisotropy on the decay of Saint-Venant end effects. Saint-Venant decay rates for self-equilibrated edge loads in symmetric sandwich structures are examined in the context of anti-plane shear for linear anisotropic elasticity. The problem is governed by a second-order, linear, elliptic, partial differential equation with discontinuous coefficients. The most general anisotropy consistent with a state of anti-plane shear is considered, as well as a variety of boundary conditions. Anti-plane or longitudinal shear deformations are one of the simplest classes of deformations in solid mechanics. The resulting deformations are completely characterized by a single out-of-plane displacement which depends only on the in-plane coordinates. They can be thought of as complementary deformations to those of plane elasticity. While these deformations have received little attention compared with the plane problems of linear elasticity, they have recently been investigated for anisotropic and inhomogeneous linear elasticity. In the context of linear elasticity, Saint-Venant's principle is used to show that self-equilibrated loads generate local stress effects that quickly decay away from the loaded end of a structure. For homogeneous isotropic linear elastic materials this is well-documented. Self-equilibrated loads are a class of load distributions that are statically equivalent to zero, i.e., have zero resultant force and moment. When Saint-Venant's principle is valid, pointwise boundary conditions can be replaced by more tractable resultant conditions. It is shown in the present study that material inhomogeneity significantly affects the practical application of Saint-Venant's principle to sandwich structures.  相似文献   

20.
In the present paper,the compatibility equation for the plane stress problems of power-law materials is transformed into a biharmonic equation by introducing the so-calledcomplex pseudo-stress function,which makes it possible to solve the elastic-plastic planestress problems of strain hardening materials described by power-law using the complexvariable function method like that in the linear elasticity theory.By using this generalmethod,the close-formed analytical solutions for the stress,strain and displacementcomponents of the plane stress problems’of power-law materials is deduced in the paper,which can also be used to solve the elasto-plastic plane stress problems of strain-hardeningmaterials other than that described by power-law.As an example,the problem of a power-law material infinite plate containing a circular hole under uniaxial tension is solved byusing this method,the results of which are compared with those of a known asymptoticanalytical solution obtained by the perturbation method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号