首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Two novel statically indeterminate planar lattice materials are designed: a new Kagome cell (N-Kagome) and a statically indeterminate square cell (SI-square). Their in-plane mechanical properties, such as stiffness, yielding, buckling and collapse mechanisms are investigated by analytical methods. The analytical stiffness is also verified by means of finite element (FE) simulations. In the case of uniaxial loading, effective modulus, yield strength, buckling strength and critical relative density are compared for various lattice structures. At a critical relative density, the collapse mode will change from buckling to yielding. Elastic buckling under macroscopic shear loading is found to have significant influence on failure of lattice structures, especially at low relative densities. Comparison of the analytical bulk and shear moduli with the Hashin–Shtrikman bounds indicates that the mechanical properties of the SI-square honeycomb are relatively close to being optimal. It is found that compared with the other existing stretching-dominated 2D lattice structures, the N-Kagome cell possesses the largest continuous cavities for fixed relative densities and wall thicknesses, which is convenient for oil storage, disposal of heat exchanger, battery deploying and for other functions. And the initial yield strength of the N-Kagome cell is slightly lower than that of the Kagome cell. The SI-square cell has similar high stiffness and strength as the mixed cell while its buckling resistance is about twice than that of the mixed cell.  相似文献   

2.
The fracture toughness of elastic-brittle 2D lattices is determined by the finite element method for three isotropic periodic topologies: the regular hexagonal honeycomb, the Kagome lattice and the regular triangular honeycomb. The dependence of mode I and mode II fracture toughness upon relative density is determined for each lattice, and the fracture envelope is obtained in combined mode I-mode II stress intensity factor space. Analytical estimates are also made for the dependence of mode I and mode II toughness upon relative density. The high nodal connectivity of the triangular grid ensures that it deforms predominantly by stretching of the constituent bars, while the hexagonal honeycomb deforms by bar bending. The Kagome microstructure deforms by bar stretching remote from the crack tip, and by a combination of bar bending and bar stretching within a characteristic elastic deformation zone near the crack tip. This elastic zone reduces the stress concentration at the crack tip in the Kagome lattice and leads to an elevated macroscopic toughness.Predictions are given for the tensile and shear strengths of a centre-cracked panel with microstructure given explicitly by each of the three topologies. The hexagonal and triangular honeycombs are flaw-sensitive, with a strength adequately predicted by linear elastic fracture mechanics (LEFM) for cracks spanning more than a few cells. In contrast, the Kagome microstructure is damage tolerant, and for cracks shorter than a transition length its tensile strength and shear strength are independent of crack length but are somewhat below the unnotched strength. At crack lengths exceeding the transition value, the strength decreases with increasing crack length in accordance with the LEFM estimate. This transition crack length scales with the parameter of bar length divided by relative density of the Kagome grid, and can be an order of magnitude greater than the cell size at low relative densities. Finally, the presence of a boundary layer is noted at the free edge of a crack-free Kagome grid loaded in tension and in shear. Deformation within this boundary layer is by a combination of bar bending and stretching whereas remote from the free edge the Kagome grid deforms by bar stretching (with a negligible contribution from bar bending). The edge boundary layer degrades both the macroscopic stiffness and strength of the Kagome plate. No such boundary layer is evident for the hexagonal and triangular honeycombs.  相似文献   

3.
零能模式超材料指弹性矩阵的特征值中有若干为零的弹性材料,根据零特征值的个数可将其分类为一模至五模材料。当前,针对五模材料已有较深入研究,并在水声和弹性波调控方面获得重要应用,而对其他类型零能模式材料的研究尚未展开。本文对扭曲Kagome周期桁架这样一类欠约束点阵材料的有效弹性性质进行了研究,结果表明通过调节点阵材料的微观几何构型和杆件刚度,该类结构能够涵盖一系列一模材料谱系。针对给定一模弹性张量,发展了软-硬模式分离的微结构逆向优化设计策略。通过特定一模材料中的波传播现象对有效性质预测和微结构设计进行了数值验证。  相似文献   

4.
Lattice materials have been attractive over the last decade for use as load-carrying structures, energy absorbing elements and heat exchanging structures because of their excellent mechanical properties and multifunctional characters. However, the quantitative analysis accounting for high order deformations upon the collapse of lattice materials, which is important for their applications, has not been reported. An analytical investigation of yield surfaces with respect to the high order deformations was carried out for two typical planar lattice materials: triangular and Kagome lattices separately. The analytical results were validated by the finite element method (FEM) simulations. It was found that the effect of high order deformation on the yield strength increases with the relative density. The bending effect of the Kagome lattice is more obvious than that of the triangular one with the same relative density and stress state. The yield strength of the Kagome lattice calculated by neglecting the bending effect overestimates the result by more than 10% when the relative density is higher than about 11.1%, which may not be ignored in engineering applications. The yielding surfaces of the two lattice materials demonstrated in the paper also confirm the analytical results.  相似文献   

5.
格栅结构力学性能研究进展   总被引:5,自引:1,他引:4  
格栅复合材料是一种新型轻质高强材料. 综述了格栅复合材料的周期构型特征和格栅结构的制备工艺. 归纳了二维周期格栅材料的等效刚度矩阵计算方法, 比较了不同构型格栅的基本力学性能, 介绍了胞元材料的微极弹性理论和格栅的强度与屈服面计算方法. 探讨了格栅的缺陷及其力学响应, 包括格栅的尺度效应、夹杂缺陷以及裂纹扩展特征, 介绍了波在格栅材料中传播机理的最新研究成果. 根据格栅材料在工程中的应用形式, 分类介绍了格栅板壳结构、格栅加筋板壳结构和格栅夹层结构的结构特点和破坏方式、设计优化准则和实验研究成果. 还归纳了作者所在研究小组近期在碳纤维格栅复合材料的制备、实验研究和理论分析等方面的最新工作进展.   相似文献   

6.
The ductile fracture behavior of two-dimensional imperfect lattice material under dynamic stretching is studied by finite element method using ABAQUS/Explicit code. The simulations are performed with three isotopic lattice materials: the regular hexagonal honeycomb, the Kagome lattice and the regular triangular lattice. All the three lattices are made of an elastic/visco-plastic metal material. Two typical imperfections: vacancy defect and rigid inclusion are introduced separately. The numerical results reveal novel deformation modes and crack growth patterns in the ductile fracture of lattice material. Various crack growth patterns as defined according to their profiles, “X”-type, “Butterfly”-type, “Petal”-type, are observed in different combinations of imperfection type and lattice topology. Crack propagation could induce severe material softening and deduce the plastic dissipation of the lattices. Subsequently, the effects of the strain rate, relative density, microstructure topology, and defect type on the crack growth pattern, the associated macroscopic material softening and the knock-down of total plastic dissipation are investigated.  相似文献   

7.
钱岳强  邱信明  张雄 《力学学报》2008,40(6):826-833
分析了Kagome格栅的等效刚度和屈服面. 其屈服面奇异,由4段直线围成. 利用该屈服面,估算了Kagome具有I型、II型半无限大裂纹的裂尖塑性区,有限元计算验证了解析预测的准确性. 与奇异屈服面相比,由Mises光滑屈服面给出的塑性区误差较大. 因此只有弹性情况,可以将Kagome等效为各向同性;若材料塑性,或应力场奇异性较强,Kagome的强度依赖于主应力方向,不能用各向同性模型来描述.   相似文献   

8.
The fracture investigations of the planar lattices made of ductile cell walls are currently limited to bending-dominated hexagonal honeycomb. In this paper, the plastic zones of stretching-dominated lattices, including Kagome and triangular lattices, are estimated by analyzing their effective yield loci. The normalized in-plane yield loci of these two lattices are almost identical convex curves enclosed by 4 straight lines, which is almost independent of the relative density but is highly sensitive to the principal stress directions. Therefore, the plastic zones around the crack tip of Kagome and triangular are estimated to be quite different to those of the continuum solid and also hexagonal lattice. The plastic zones predictions by convex yield surfaces of both lattices are validated by FE calculations, although the shear lag region caused by non-local bending effect in the Kagome lattice enlarges the plastic zone in cases of small ratio of rp/l.  相似文献   

9.
The defect interaction and reinforcement of imperfect two-dimensional lattice materials are studied by theoretical investigations and finite element (FE) simulations. An analytical model is proposed to predict the interaction of two defects in lattice materials based on a single defect model. An interaction coefficient is introduced to characterize the degree of interaction. The effects of defect type and defect distance on interaction coefficients are studied. The critical interaction distance of defects, beyond which the interaction of two defects can be neglected, is derived. FE calculations are performed to validate the theoretical model. The simulated results indicate that increasing the number of defects can reduce the stress concentration rather than weakening the strength of the residual parts in certain circumstances. Subsequently, several reinforcement methods are proposed to reduce the stress concentration in the triangular and Kagome lattice for the single-bar-missing defect and single-joint-missing defect. An analytical model is developed for the reinforced lattices, and the predicted stress concentration factors are in good agreement with those of FE simulations. By theoretical studies and FE simulations, optimal reinforcement methods are derived for the triangular and Kagome lattice under planar loading conditions.  相似文献   

10.
Recently, a nanoscale lattice material, based upon the gyroid topology has been self-assembled by phase separation techniques (Scherer et al., 2012) and prototyped in thin film applications. The mechanical properties of the gyroid are reported here. It is a cubic lattice, with a connectivity of three struts per joint, and is bending-dominated in its elasto-plastic response to all loading states except for hydrostatic: under a hydrostatic stress it exhibits stretching-dominated behaviour. The three independent elastic constants of the lattice are determined through a unit cell analysis using the finite element method; it is found that the elastic and shear modulus scale quadratically with the relative density of the lattice, whereas the bulk modulus scales linearly. The plastic collapse response of a rigid, ideally plastic gyroid lattice is explored using the upper bound method, and is validated by finite element calculations for an elastic-ideally plastic lattice. The effect of geometrical imperfections, in the form of random perturbations to the joint positions, is investigated for both stiffness and strength. It is demonstrated that the hydrostatic modulus and strength are imperfection sensitive, in contrast to the deviatoric response. The macroscopic yield surface of the imperfect lattice is adequately described by a modified version of Hill’s anisotropic yield criterion. The article ends with a case study on the stress induced within a gyroid thin film, when the film and its substrate are subjected to a thermal expansion mismatch.  相似文献   

11.
The Kagome Double-Layer Grid (KDLG) is a sandwich-like structure, based on the planar Kagome pattern, which has properties that make it attractive for application as a morphing material. In order to understand the passive and active properties of the KDLG with rigid joints, an analysis is made of the determinacy of the pin-jointed version. The number of internal mechanisms and states of self-stress of the finite pin-jointed structure are calculated as a function of the size of the structure. A statically and kinematically determinate version is obtained by relocating the internal nodes and by prescribing a set of patch bars around the periphery. The actuation performance of the rigid-jointed version is then explored theoretically by replacing a single bar in the structure by an actuator. The resistance to actuation is determined in terms of the stiffness and the allowable actuation strain as dictated by yield and buckling. The paper concludes with the optimal design of a double-layer grid to maximise actuation performance.  相似文献   

12.
The imperfection sensitivity of in-plane modulus and fracture toughness is explored for five morphologies of 2D lattice: the isotropic triangular, hexagonal and Kagome lattices, and the orthotropic 0/90° and ±45° square lattices. The elastic lattices fail when the maximum local tensile stress at any point attains the tensile strength of the solid. The assumed imperfection comprises a random dispersion of the joint position from that of the perfect lattice. Finite element simulations reveal that the knockdown in stiffness and toughness are sensitive to the type of lattice: the Kagome and square lattices are the most imperfection sensitive. Analytical models are developed for the dependence of modes I and II fracture toughness of the 0/90° and ±45° lattices upon relative density. These models explain why the mode II fracture toughness of the 0/90° lattice has an unusual functional dependence upon relative density.  相似文献   

13.
14.
The present work is an in-depth study of the connections between microstructural instabilities and their macroscopic manifestations—as captured through the effective properties—in finitely strained porous elastomers. The powerful second-order homogenization (SOH) technique initially developed for random media, is used for the first time here to study the onset of failure in periodic porous elastomers and the results are compared to more accurate finite element method (FEM) calculations. The influence of different microgeometries (random and periodic), initial porosity, matrix constitutive law and macroscopic load orientation on the microscopic buckling (for periodic microgeometries) and macroscopic loss of ellipticity (for all microgeometries) is investigated in detail. In addition to the above-described stability-based onset-of-failure mechanisms, constraints on the principal solution are also addressed, thus giving a complete picture of the different possible failure mechanisms present in finitely strained porous elastomers.  相似文献   

15.
Wires are great candidates as the raw material for truss periodic cellular metals because they can display high strength as in piano wires, are easy to fabricate, and can be controlled to be defect free. New approaches based on tri-axial weaving of wires to create ideal trusses, i.e., tetrahedral and Kagome truss have been presented. The mechanical properties of the sandwich panels with the truss cores fabricated by using the new approaches under compression and bending loadings are analyzed by elementary beam theory and experiments. The relative density, stiffness, and strength of the sandwich panels are estimated by the derived equations and compared with the measured results. The failure mechanisms of the sandwich panels are analyzed, and also benefits and shortcomings of each approach with respect to mechanical performance and production are discussed.  相似文献   

16.
为了提高简单立方(SC)点阵结构的平压力学性能,在ABAQUS中对SC单胞建立了周期边界约束方程,并通过ESO算法对周期边界条件下的SC单胞进行了拓扑优化设计。随后对优化SC单胞的等效弹性模量进行了求解,发现优化SC单胞的等效弹性模量明显优于传统SC单胞,从外部去除单胞材料可使优化单胞等效压缩模量提高27.14%,从内部去除单胞材料可使单胞等效剪切模量提高46.18%。最后将优化SC单胞从单胞层面扩展到宏观结构中,探究了三类SC点阵结构的静态平压性能。研究表明,周期边界条件与ESO相结合的拓扑优化方法,可使SC结构静态平压时的抵抗力得到明显提升。相比传统SC点阵结构,优化后的SC点阵结构抵抗力提高了20%以上。  相似文献   

17.
We study a two-dimensional triangular lattice made of bistable rods. Each rod has two equilibrium lengths, and thus its energy has two equal minima. A rod undergoes a phase transition when its elongation exceeds a critical value. The lattice is subject to a homogeneous strain and is periodic with a sufficiently large period. The effective strain of a periodic element is defined. After phase transitions, the lattice rods are in two different states and lattice strain is inhomogeneous, the Cauchy–Born rule is not applicable. We show that the lattice has a number of deformed still states that carry no stresses. These states densely cover a neutral region in the space of entries of effective strains. In this region, the minimal energy of the periodic lattice is asymptotically close to zero. When the period goes to infinity, the effective energy of such lattices has the “flat bottom” which we explicitly describe. The compatibility of the partially transited lattice is studied. We derive compatibility conditions for lattices and demonstrate a family of compatible lattices (strips) that densely covers the flat bottom region. Under an additional assumption of the small difference of two equilibrium lengths, we demonstrate that the still structures continuously vary with the effective strain and prove a linear dependence of the average strain on the concentration of transited rods.  相似文献   

18.
We use a computational homogenisation approach to derive a non linear constitutive model for lattice materials. A representative volume element (RVE) of the lattice is modelled by means of discrete structural elements, and macroscopic stress–strain relationships are numerically evaluated after applying appropriate periodic boundary conditions to the RVE. The influence of the choice of the RVE on the predictions of the model is discussed. The model has been used for the analysis of the hexagonal and the triangulated lattices subjected to large strains. The fidelity of the model has been demonstrated by analysing a plate with a central hole under prescribed in plane compressive and tensile loads, and then comparing the results from the discrete and the homogenised models.  相似文献   

19.
Chai  Yuyang  Li  Fengming  Song  Zhiguang  Zhang  Chuanzeng 《Nonlinear dynamics》2020,102(4):2179-2203

This paper is devoted to investigate the nonlinear vibration characteristics and active control of composite lattice sandwich plates using piezoelectric actuator and sensor. Three types of the sandwich plates with pyramidal, tetrahedral and Kagome cores are considered. In the structural modeling, the von Kármán large deflection theory is applied to establish the strain–displacement relations. The nonlinear equations of motion of the structures are derived by Hamilton’s principle with the assumed mode method. The nonlinear free and forced vibration responses of the lattice sandwich plates are calculated. The velocity feedback control (VFC) and H control methods are applied to design the controller. The nonlinear vibration responses of the sandwich plates with pyramidal, tetrahedral and Kagome cores are compared. The influences of the ply angle of the laminated face sheets, the thicknesses of the lattice core and face sheets and the excitation amplitude on the nonlinear vibration behaviors of the sandwich plates are investigated. The correctness of the H control algorithm is verified by comparing with the experiment results reported in the literature. The controlled nonlinear vibration response of the sandwich plate is computed and compared with that of the uncontrolled structural system. Numerical results indicate that the VFC and H control methods can effectively suppress the large amplitude vibration of the composite lattice sandwich plates.

  相似文献   

20.
We extend (Bru et al. in J Math Phys 56:051901-1-51, 2015) in order to study the linear response of free fermions on the lattice within a (independently and identically distributed) random potential to a macroscopic electric field that is time- and space-dependent. We obtain the notion of a macroscopic AC-conductivity measure which only results from the second principle of thermodynamics. The latter corresponds here to the positivity of the heat production for cyclic processes on equilibrium states. Its Fourier transform is a continuous bounded function which is naturally called (macroscopic) conductivity. We additionally derive Green–Kubo relations involving time-correlations of bosonic fields coming from current fluctuations in the system. This is reminiscent of non-commutative central limit theorems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号