首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The adsorption and reaction of methyl nitrite (CH3ONO, CD3ONO) on Pt(111) was studied using HREELS, UPS, TPD, AES, and LEED. Adsorption of methyl nitrite on Pt(111) at 105 K forms a chemisorbed monolayer with a coverage of 0.25 ML, a physisorbed second layer with the same coverage that desorbs at 134 K, and a condensed multilayer that desorbs at 117 K. The Pt(111) surface is very reactive towards chemisorbed methyl nitrite; adsorption in the monolayer is completely irreversible. CH3ONO dissociates to form NO and an intermediate which subsequently decomposes to yield CO and H2 at low coverages and methanol for CH3ONO coverages above one-half monolayer. We propose that a methoxy intermediate is formed. At least some C–O bond breaking occurs during decomposition to leave carbon on the surface after TPD. UPS and HREELS show that some methyl nitrite decomposition occurs below 110 K and all of the methyl nitrite in the monolayer is decomposed by 165 K. Intermediates from methyl nitrite decomposition are also relatively unstable on the Pt(111) surface since coadsorbed NO, CO and H are formed below 225 K.  相似文献   

2.
The adsorption of oxygen and the nanometer-scale faceting induced by oxygen have been studied on Ir(2 1 0). Oxygen is found to chemisorb dissociatively on Ir(2 1 0) at room temperature. The molecular desorption process is complex, as revealed by a detailed kinetic analysis of desorption spectra. Pyramid-shaped facets with {3 1 1} and (1 1 0) orientations are formed on the oxygen-covered Ir(2 1 0) surface when annealed to T?600 K. The surface remains faceted for substrate temperatures T<850 K. For T>850 K, the substrate structure reverts to the oxygen-covered (2 1 0) planar state and does so reversibly, provided that oxygen is not lost due to desorption or via chemical reactions upon which the planar (2 1 0) structure remains. A clean faceted surface was prepared through the use of low temperature surface cleaning methods: using CO oxidation, or reaction of H2 to form H2O, oxygen can be removed from the surface while preserving (“freezing”) the faceted structure. The resulting clean faceted surface remains stable for T<600 K. For temperatures above this value, the surface irreversibly relaxes to the planar state.  相似文献   

3.
The adsorption and reaction of methylacetylene (H3CC≡CH) on Pt(111) and the p(2×2) and

surface alloys were investigated with temperature programmed desorption, Auger electron spectroscopy and low energy electron diffraction. Hydrogenation of methylacetylene to form propylene is the most favored reaction pathway on all three surfaces accounting for ca 20% of the adsorbed monolayer. Addition of Sn to the Pt(111) surface to form these two ordered surface alloys suppresses the decomposition of methylacetylene to surface carbon. The alloy surfaces also greatly increase the amount of reversibly adsorbed methylacetylene, from none on Pt(111) to 60% of the adsorbed layer on the

surface alloy. Methylacetylene reaction also leads to a small amount of desorption of benzene, along with butane, butene, isobutylene and ethylene. There is some difference in the yield of these other reaction products depending the Sn concentration, with the (2×2)-Sn/Pt(111) surface alloy having the highest selectivity for these. Despite previous experiments showing cyclotrimerization of acetylene to form benzene on the Pt–Sn surface alloys, the analogous reaction of methylacetylene on the alloy surfaces was not observed, that is, cyclotrimerization of methylacetylene to form trimethylbenzene. It is proposed that this and the high yield of propylene is due to facile dehydrogenation of methylacetylene because of the relatively weak H–CH2CCH bond compared to acetylene. The desorption of several C4 hydrocarbon products at low (<170 K) temperature indicates that some minor pathway involving C–C bond breaking is possible on these surfaces.  相似文献   

4.
The adsorption of CO on Ir(111) has been investigated with Fourier transform infrared reflection-absorption spectroscopy, temperature programmed desorption, and low-energy electron diffraction. At sample temperatures between 90 and 350 K, only a single absorption band, above 2000 cm−1, has been observed at all CO coverages. For fractional coverages above approximately 0.2, the bandwidth becomes as narrow as 5.5 cm−1. The linewidth is attributed mainly to inhomogeneous broadening at low CO coverages and to the creation of electron-hole pairs at higher CO coverages. The coverage-dependent frequency shift of the IR band can be described quantitatively using an improved dipolar coupling model. The contribution of the dipole shift and the chemical shift to the total frequency shift were separated using isotopic mixtures of CO. The chemical shift is positive with a constant value of approximately 12 cm−1 for all coverages, whereas the dipole shift increases with coverage up to a value of 36 cm−1 at a coverage of 0.5 ML.  相似文献   

5.
The effect of adsorbate coverage, adsorption sequence and temperature on the structure, composition and reactivity of coadsorbed layers, produced by dissociative adsorption of O2 and H2 at 200 K on a Rh(100) surface, has been studied by combined TPD, XPS and LEED measurements. The emphasis is on the impact of the structure and composition of the mixed O + H layers on the synthesis of hydroxyl and water as a result of the O + H surface reaction. The difference in the O 1s binding energies of adsorbed O (529.9 eV) and OH species (530.8 eV) was used as a fingerprint to monitor the formation of the OH species. The H2O TPD spectra show substantial variations of the desorption temperature range and the amount of water evolved with coadsorbate coverage and structure: from 270 to 350 K and from 0 to 0.08 ML, respectively. It has been found that dense O + H adlayers, where the O coverage is in the range 0.25-0.4 ML, favor the formation of stable OH species. The maximum amount of stable hydroxyl OH species ( 0.16 ML) can be produced by heating of these dense adlayers to 260 K. This results in reordering of the adspecies to form a new O + OH − (2 × 6) structure, where hydroxyls react readily to evolve 0.08 ML of water in a sharp desorption peak at 280 K. The effect of the adlayer density and restructuring on the production of OH and H2O is discussed.  相似文献   

6.
The adsorption and reaction of the isomers nitromethane (CH3NO2) and methyl nitrite (CH3ONO) on two ordered Sn/Pt(111) surface alloys were studied using TPD, AES, and LEED. Even though the Sn–O bond is stronger than the Pt–O bond and Sn is more easily oxidized than Pt, alloying with Sn reduces the reactivity of the Pt(111) surface for both of these oxygen-containing molecules. This is because of kinetic limitations due to a weaker chemisorption bond and an increased activation energy for dissociation for these molecules on the alloys compared to Pt(111). Nitromethane only weakly adsorbs on the Sn/Pt(111) surface alloys, shows no thermal reaction during TPD, and undergoes completely reversible adsorption under UHV conditions. Methyl nitrite is a much more reactive molecule due to the weak CH3O–NO bond, and most of the chemisorbed methyl nitrite decomposes below 240 K on the alloy surfaces to produce NO and a methoxy species. Surface methoxy is a stable intermediate until 300 K on the alloys, and then it dehydrogenates to evolve gas phase formaldehyde with high selectivity against complete dehydrogenation to form CO on both alloy surfaces.  相似文献   

7.
Jooho Kim  Bruce E. Koel 《Surface science》2006,600(19):4622-4632
Nanosized gold particles supported on reducible metal oxides have been reported to show high catalytic activity toward CO oxidation at low temperature. This has generated great scientific and technological interest, and there have been many proposals to explain this unusual activity. One intriguing explanation that can be tested is that of Nørskov and coworkers [Catal. Lett. 64 (2000) 101] who suggested that the “unusually large catalytic activity of highly-dispersed Au particles may in part be due to high step densities on the small particles and/or strain effects due to the mismatch at the Au-support interface”. In particular, their calculations indicated that the Au(2 1 1) stepped surface would be much more reactive towards O2 dissociative adsorption and CO adsorption than the Au(1 1 1) surface. We have now studied the adsorption of O2 and O3 (ozone) on an Au(2 1 1) stepped surface. We find that molecular oxygen (O2) was not activated to dissociate and produce oxygen adatoms on the stepped Au(2 1 1) surface even under high-pressure (700 Torr) conditions with the sample at 300-450 K. Step sites do bind oxygen adatoms more tightly than do terrace sites, and this was probed by using temperature programmed desorption (TPD) of O2 following ozone (O3) exposures to produce oxygen adatoms up to a saturation coverage of θO = 0.90 ML. In the low-coverage regime (θO ? 0.15 ML), the O2 TPD peak at 540 K, which does not shift with coverage, is attributed to oxygen adatoms that are bound at the steps on the Au(2 1 1) surface. At higher coverages, an additional lower temperature desorption peak that shifts from 515 to 530 K at saturation coverage is attributed to oxygen adsorbed on the (1 1 1) terrace sites of the Au(2 1 1) surface. Although the desorption kinetics are likely to be quite complex, a simple Redhead analysis gives an estimate of the desorption activation energy, Ed, for the step-adsorbed oxygen of 34 kcal/mol and that for oxygen at the terraces near saturation coverage of 33 kcal/mol, values that are similar to others reported on Au surfaces. Low Energy Electron Diffraction (LEED) indicates an oxygen-induced step doubling on the Au(2 1 1) surface at low-coverages (θO = 0.08-0.17 ML) and extensive disruption of the 2D ordering at the surface for saturation coverages of oxygen (θO ? 0.9 ML). Overall, our results indicate that unstrained step sites on Au(2 1 1) surfaces of dispersed Au nanoparticles do not account for the novel reactivity of supported Au catalysts for CO oxidation.  相似文献   

8.
In this work we show the adsorption of acetonitrile (CH3CN) and acrylonitrile (CH2CHCN) on Si(0 0 1)-2 × 1 at room temperature by increasing the molecular doses. Especially, by means of XPS and LEED data, we stress the action of these molecules on the silicon surface locating the dangling-bonds quasi-saturation within 10 L. The shortage of nitrogen XPS signal and some anomalies in carbon spectra point to an invading action from a traditional X-ray source (Al-Kα line) against chemisorbed molecules. In particular, we think that a long exposure to this radiation could break carbon-silicon bonds changing some adsorption geometries and making desorb molecular fragments.  相似文献   

9.
Adsorption of CO on a Pd monolayer (ML) supported on Mo(110) has been studied using low energy electron diffraction (LEED), temperature programmed desorption (TPD), and high resolution electron energy loss spectroscopy (HREELS). Three ordered CO substructures denoted as are observed with LEED. The binding energy of C0 on the 1.0 ML Pd/Mo(110) surface is reduced by 12 kcal/mol relative to the Pd(111) surface, consistent with previous results for supported palladium monolayers on other substrates. Two vibrational states of C0 are observed near 1950 and 2050 cm−1, with the feature at the lower wavenumber having the smaller binding energy.  相似文献   

10.
We determined the local adsorption structure of disordered oxygen on the Ni(1 1 1) surface by means of diffuse holographic LEED. The measurements have been performed above the critical temperature (Tc=450 K) for the oxygen order-disorder phase transition at 500 K and at a coverage of Θ=0.25 ML. At this temperature we found, in agreement with a previous LEED-IV-analysis [Surf. Sci. 349 (1996) 185], that besides the fcc threefold sites also hcp sites are occupied. In addition, a small amount seems to be located also at top and bridge sites. Reconstructing the holographic wavefield information, the different oxygen adsorption geometries are superimposed in the real space image. Nevertheless, a spatial resolution of 0.5-1 Å was sufficient to clearly distinguish between them. The influence of algorithmic parameters on the image quality was tested.  相似文献   

11.
Oxidation of the hydrogenated diamond (100) surface   总被引:4,自引:0,他引:4  
The surface composition and structure of natural diamond (100) surfaces subsequently oxidized with activated oxygen at Tsub≤35°C were investigated with high-resolution electron energy loss spectroscopy (HREELS), Auger electron spectroscopy, electron loss spectroscopy (ELS) and low-energy electron diffraction (LEED). Complete surface oxidation (oxygen coverage θ=1 ML) required doses of hundreds of kilolangmuirs of O2. HREELS vibrational spectra permitted identification of the specific surface oxygen species, and also provided information about the diamond surface states. Most surface sites lost their hydrogen at least once before becoming oxidized. The oxygen coverage θ increased quickly at first, and then more slowly as saturation was approached; different mechanisms or sites may have accounted for the decreased rate. The relative distribution of oxygen species varied with the oxidation conditions. Ether, carbonyl and hydroxyl groups appeared during the initial stages of oxidation, but the hydroxyl groups disappeared at higher coverages. Bridge-bonded ether groups dominated at saturation coverage, although smaller amounts of carbonyl and hydroxyl were still observed. The carbonyl and C---H stretch frequencies increased with oxygen dose due to formation of higher oxidation states and/or hydrogen bonding between adjacent groups. ELS revealed only a low concentration of C=C dimers on the oxidized surfaces, and no evidence of graphitization.

Surfaces generated by oxygen addition and then desorption were more reactive than surfaces generated by hydrogen desorption. Oxidized surfaces that were heated in vacuum and then rehydrogenated did not recover the sharp LEED patterns and HREELS spectra of the original plasma-smoothed surface. This effect was presumably due to surface roughening caused by oxygen desorption as CO and CO2, and creation of reactive high-energy sites that quickly bonded to available background gases and prevented large areas of organized surface reconstruction.  相似文献   


12.
The adsorption and desorption of glycine (NH2CH2COOH), vacuum deposited on a NiAl(1 1 0) surface, were investigated by means of Auger electron spectroscopy (AES), low energy electron diffraction (LEED), temperature-programmed desorption, work function (Δφ) measurements, and ultraviolet photoelectron spectroscopy (UPS). At 120 K, glycine adsorbs molecularly forming mono- and multilayers predominantly in the zwitterionic state, as evidenced by the UPS results. In contrast, the adsorption at room temperature (310 K) is mainly dissociative in the early stages of exposure, while molecular adsorption occurs only near saturation coverage. There is evidence that this molecularly adsorbed species is in the anionic form (NH2CH2COO). Analysis of AES data reveals that upon adsorption glycine attacks the aluminium sites on the surface. On heating part of the monolayer adsorbed at 120 K is converted to the anionic form and at higher temperatures dissociates further before desorption. The temperature-induced dissociation of glycine (<400 K) leads to a series of similar reaction products irrespective of the initial adsorption step at 120 K or at 310 K, leaving finally oxygen, carbon and nitrogen at the surface. AES and LEED measurements indicate that oxygen interacts strongly with the Al component of the surface forming an “oxide”-like Al-O layer.  相似文献   

13.
Oxidation of heated diamond C(100):H surfaces   总被引:2,自引:0,他引:2  
This paper extends a previous study (Pehrsson and Mercer, submitted to Surf. Sci.) on unheated, hydrogenated, natural diamond (100) surfaces oxidized with thermally activated oxygen (O*2). In this paper, the oxidation is performed at substrate temperatures from Tsub=24 to 670°C. The diamond surface composition and structure were then investigated with high resolution electron energy loss spectroscopy (HREELS), Auger electron spectroscopy (AES), electron loss spectroscopy (ELS) and low energy electron diffraction (LEED).

The oxygen coverage (θ) increased in two stages, as it did during oxidation at T<80°C. However, there are fundamental differences between the oxidation of nominally unheated and heated diamond surfaces. This difference is attributed to simultaneous adsorption and rapid desorption of oxygen species at higher temperatures; the desorption step is much slower without heating. The initial oxidation rates were similar regardless of the substrate temperatures, but the peak coverage (θ) was lower at higher temperatures. For example, θ plateaued at 0.4±0.1 ML at 600°C. The lower saturation coverage is again attributed to oxygen desorption during oxidation. Consistent results were obtained on fully oxidized surfaces, which when heated in vacuum to Tsub=600°C, lost 60% of their adsorbed oxygen. ELS revealed few C=C dimers on the oxidized surfaces, and more graphitization than on unheated surfaces. Oxidation at elevated temperatures also increased the carbonyl to ether ratio, reflecting etching-induced changes in the types of surface sites. The carbonyl and C–H stretch frequencies increased with oxygen dose due to formation of higher oxidation states and/or hydrogen bonding between adjacent groups. The oxygen types did not interconvert when the oxidized surfaces were heated in vacuum. Oxygen desorption generated a much more reactive surface than heating-induced dehydrogenation of the smooth, hydrogenated surface.  相似文献   


14.
A quantitative low energy electron diffraction (LEED) analysis has been performed for the p(2 × 2)-S and c(2 × 2)-S surface structures formed by exposing the (1 × 1) phase of Ir{1 0 0} to H2S at 750 K. S is found to adsorb on the fourfold hollow sites in both structures leading to Pendry R-factor values of 0.17 for the p(2 × 2)-S and 0.16 for the c(2 × 2)-S structures. The distances between S and the nearest and next-nearest Ir atoms were found to be similar in both structures: 2.36 ± 0.01 Å and 3.33 ± 0.01 Å, respectively. The buckling in the second substrate layer is consistent with other structural studies for S adsorption on fcc{1 0 0} transition metal surfaces: 0.09 Å for p(2 × 2)-S and 0.02 Å for c(2 × 2)-S structures. The (1 × 5) reconstruction, which is the most stable phase for clean Ir{1 0 0}, is completely lifted and a c(2 × 2)-S overlayer is formed after exposure to H2S at 300 K followed by annealing to 520 K. CO temperature-programmed desorption (TPD) experiments indicate that the major factor in the poisoning of Ir by S is site blocking.  相似文献   

15.
The adsorption and dissociation of NO on the Rh(110) surface were studied by synchrotron radiation X-ray photoemission spectroscopy at temperatures in the range 210–370 K. The O 1s or N 1s spectra were collected every 14 s while the surface was continuously exposed to a steady NO gas pressure. The difference in the binding energies for the atomic oxygen (O 1s ≤530.2 eV), atomic nitrogen (N 1s 397.2 eV) and molecular upright bonded NO molecules (O 1s ≥531.0 eV and N 1s 400 eV) allowed us to distinguish these surface species and to follow the evolution of the adsorbate layer. In addition to these dominating surface species a new species, characterized by O 1s binding energy of 530.7 eV and N 1s binding energy similar to that of the atomic nitrogen, was detected within a narrow coverage range. This state is tentatively assigned to a “lying down” NO bonding configuration, detectable at the timescale of the measurements. The uptake plots, constructed using the integrated intensity of the deconvoluted O 1s and N 1s spectra, are used to elucidate the effect of the reaction temperature and surface coverage and composition on the kinetics of dissociative and molecular NO adsorption of Rh(110).  相似文献   

16.
Extending earlier vibrational spectroscopy and thermal desorption measurements on this system, its geometrical structure and its adsorption/desorption kinetics have been investigated in detail. The adsorption and desorption of NO proceed, with little influence on the 3O template, on its (2 × 2) lattice of empty hcp sites. The desorption kinetics, with splitting of the TPD spectra into two peaks, are far from the expected behavior for independent sites. Also, the vibrational band structure shows dispersion beyond dipole-dipole interactions. So, despite the quite large NO-NO distance and their screening by the O atoms, there is clear evidence for static and dynamic lateral interactions which should be extractable from the data. A qualitative analysis suggests that these interactions are due to elastic coupling between the positions and vibrations, respectively, of the O and NO adsorbates. However, quantitative conclusions cannot be drawn directly as the kinetic data cannot be interpreted in a quasiequilibrium approach, as would be the normal procedure, due to the presence of strong nonequilibrium effects. The lack of internal equilibration is presumably caused by slow diffusion. The results are sufficiently complete and detailed to justify the effort of theoretical modeling with the aim to quantitatively describe both the lateral interactions and the nonequilibrium effects.  相似文献   

17.
The co-adsorption of CO and O on the unreconstructed (1 × 1) phase of Ir{1 0 0} was examined by low energy electron diffraction (LEED) and temperature programmed desorption (TPD). When CO is adsorbed at 188 K onto the Ir{1 0 0} surface precovered with 0.5 ML O, a mixed c(4 × 2)-(2O + CO) overlayer is formed. All CO is oxidised upon heating and desorbs as CO2 in three distinct stages at 230 K, 330 K and 430 K in a 2:1:2 ratio. The excess oxygen left on the surface after all CO has reacted forms an overlayer with a LEED pattern with p(2 × 10) periodicity. This overlayer consists of stripes with a local p(2 × 1)-O arrangement of oxygen atoms separated by stripes of uncovered Ir. When CO is adsorbed at 300 K onto the surface precovered with 0.5 ML O an apparent (2 × 2) LEED pattern is observed. LEED IV analysis reveals that this pattern is a superposition of diffraction patterns from islands of c(2 × 2)-CO and p(2  × 1)-O structures on the surface. Heating this co-adsorbed overlayer leads to the desorption of CO2 in two stages at 330 K and 430 K; the excess CO (0.1 ML) desorbs at 590 K.LEED IV structural analysis of the mixed c(4 × 2) O and CO overlayer shows that both the CO molecules and the O atoms occupy bridge sites. The O atoms show significant lateral displacements of 0.14 Å away from the CO molecules; the C-O bond is slightly expanded with respect to the gas phase (1.19 Å); the modifications of the Ir substrate with respect to the bulk-terminated surface are very small.  相似文献   

18.
Adsorption of NO on a Pt(1 1 1) surface pre-covered with a p(2 × 2) atomic oxygen layer has been studied in situ by high-resolution X-ray photoelectron spectroscopy and temperature-programmed XPS using third-generation synchrotron radiation at BESSY II, Berlin, combined with molecular beam techniques and ex situ by low energy electron diffraction and temperature-programmed desorption. O 1s XP spectra reveal that an ordered p(2 × 2)-O layer dramatically changes the adsorption behavior of NO as compared to the clean surface. The atomic oxygen occupies fcc hollow sites, and therefore blocks NO adsorption on these sites, which are energetically preferred on clean Pt(1 1 1). As a consequence, NO populates on-top sites at low coverage. At 110 K for higher coverages, NO can additionally adsorb on hcp hollow sites, thereby inducing a shift of the O 1s binding energy of atomic oxygen towards lower energies by about 0.25 eV. The bond strength of the hcp hollow NO species to the substrate is weakened by the presence of atomic oxygen. A sharp p(2 × 2) LEED pattern is observed for NO adsorption on the oxygen pre-covered surface, up to saturation coverage. The total saturation coverage of NO on Pt(1 1 1) pre-covered with varying amounts of oxygen (below 0.25 ML) decreases linearly with the coverage of oxygen. The initial sticking coefficient of NO is reduced from 0.96 on clean Pt(1 1 1) to 0.88 on a p(2 × 2) oxygen pre-covered surface.  相似文献   

19.
We have used X-ray standing waves (XSW) in near normal incidence to determine the K–Fe bond length and the adsorption site of K at the saturation coverage at room temperature on the Fe(1 1 0) surface. Three different scattering geometries were used to enable the determination of the adsorption site by triangulation. From the results we conclude that the potassium atoms adsorb in a distorted hexagonal overlayer. The Fe–K distance, as determined from the measurements in the (2 2 0) Bragg reflection, is 3.4±0.2 Å. The long bridge site seems to be the preferred adsorption site for the potassium atoms in the distorted hexagonal overlayer. This geometry not only fits all the XSW data, but also explains all spots in the LEED pattern without the need to introduce multiple scattering. Comparison of the measured and simulated XSW data, based on the distorted hexagonal overlayer, enables a more accurate determination of the Fe–K bond length to 3.36±0.14 Å. This corresponds to a potassium hard sphere radius of rK=2.12±0.14 Å. This radius is among the largest reported for potassium on a metal, which is attributed to the high coverage and coordination of the K atoms in this overlayer arrangement.  相似文献   

20.
Glycine on Pt(111): a TDS and XPS study   总被引:1,自引:0,他引:1  
The adsorption and desorption of in situ deposited glycine on Pt(111) were investigated with thermal desorption spectroscopy (TDS) and X-ray photoelectron spectroscopy (XPS). Glycine adsorbs intact on Pt(111) at all coverages at temperatures below 250 K. The collected results suggest that the glycine molecules adsorb predominantly in the zwitterionic state both in the first monolayer and in multilayers. Upon heating, intact molecules start to desorb from multilayers around 325 K. The second (and possibly third) layer(s) are somewhat more strongly bound than the subsequent layers. The multilayer desorption follows zero order kinetics with an activation energy of 0.87 eV molecule−1. From the first saturated monolayer approximately half of the molecules desorbs intact with a desorption peak at 360 K, while the other half dissociates before desorption. Below 0.25 monolayer all molecules dissociate upon heating. The dissociation reactions lead to H2, CO2, and H2O desorption around 375 K and CO desorption around 450 K. This is well below the reported gas phase decomposition temperature of glycine, but well above the thermal desorption temperatures of the individual H2, CO2, and H2O species on Pt(111), i.e. the dissociation is catalyzed by the surface and H2, CO2, and H2O immediately desorb upon dissociation. For temperatures above 500 K the remaining residues of the dissociated molecules undergo a series of reactions leading to desorption of, for example, H2CN, N2 and C2N2, leaving only carbon left on the surface at 900 K. Comparison with previously reported studies of this system show substantial agreement but also distinct differences.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号