首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We study the spectrum σ(M) of the multipliers M which commute with the translations on weighted spaces ${L_{\omega}^{2}(\mathbb{R})}We study the spectrum σ(M) of the multipliers M which commute with the translations on weighted spaces Lw2(\mathbbR){L_{\omega}^{2}(\mathbb{R})} For operators M in the algebra generated by the convolutions with f ? Cc(\mathbb R){\phi \in {C_c(\mathbb {R})}} we show that [`(m(W))] = s(M){\overline{\mu(\Omega)} = \sigma(M)}, where the set Ω is determined by the spectrum of the shift S and μ is the symbol of M. For the general multipliers M we establish that [`(m(W))]{\overline{\mu(\Omega)}} is included in σ(M). A generalization of these results is given for the weighted spaces L2w(\mathbb Rk){L^2_{\omega}(\mathbb {R}^{k})} where the weight ω has a special form.  相似文献   

2.
Let L=?Δ+|ξ|2 be the harmonic oscillator on $\mathbb{R}^{n}Let L=−Δ+|ξ|2 be the harmonic oscillator on \mathbbRn\mathbb{R}^{n} , with the associated Riesz transforms R2j−1=(∂/∂ξj)L−1/2,R2jjL−1/2. We give a shorter proof of a recent result of Harboure, de Rosa, Segovia, Torrea: For 1<p<∞ and a dimension free constant Cp,
||(?k=12n|Rk(f)|2)1/2||Lp(\mathbbRn,dx)\leqslant Cp||f||Lp(\mathbbRn,dx).\bigg\Vert \bigg(\sum_{k=1}^{2n}\vert R_{k}(f)\vert ^{2}\bigg)^{{1}/{2}}\bigg\Vert _{L^{p}(\mathbb{R}^{n},\mathrm{d}\xi )}\leqslant C_{p}\Vert f\Vert _{L^{p}(\mathbb{R}^{n},\mathrm{d}\xi )}.  相似文献   

3.
Fourier series are considered on the one-dimensional torus for the space of periodic distributions that are the distributional derivative of a continuous function. This space of distributions is denoted Ac(\mathbbT){\mathcal{A}}_{c}(\mathbb{T}) and is a Banach space under the Alexiewicz norm, ||f||\mathbbT=sup|I| £ 2pI f|\|f\|_{\mathbb{T}}=\sup_{|I|\leq2\pi}|\int_{I} f|, the supremum being taken over intervals of length not exceeding 2π. It contains the periodic functions integrable in the sense of Lebesgue and Henstock–Kurzweil. Many of the properties of L 1 Fourier series continue to hold for this larger space, with the L 1 norm replaced by the Alexiewicz norm. The Riemann–Lebesgue lemma takes the form [^(f)](n)=o(n)\hat{f}(n)=o(n) as |n|→∞. The convolution is defined for f ? Ac(\mathbbT)f\in{\mathcal{A}}_{c}(\mathbb{T}) and g a periodic function of bounded variation. The convolution commutes with translations and is commutative and associative. There is the estimate ||f*g|| £ ||f||\mathbbT ||g||BV\|f\ast g\|_{\infty}\leq\|f\|_{\mathbb{T}} \|g\|_{\mathcal{BV}}. For g ? L1(\mathbbT)g\in L^{1}(\mathbb{T}), ||f*g||\mathbbT £ ||f||\mathbb T ||g||1\|f\ast g\|_{\mathbb{T}}\leq\|f\|_{\mathbb {T}} \|g\|_{1}. As well, [^(f*g)](n)=[^(f)](n) [^(g)](n)\widehat{f\ast g}(n)=\hat{f}(n) \hat{g}(n). There are versions of the Salem–Zygmund–Rudin–Cohen factorization theorem, Fejér’s lemma and the Parseval equality. The trigonometric polynomials are dense in Ac(\mathbbT){\mathcal{A}}_{c}(\mathbb{T}). The convolution of f with a sequence of summability kernels converges to f in the Alexiewicz norm. Let D n be the Dirichlet kernel and let f ? L1(\mathbbT)f\in L^{1}(\mathbb{T}). Then ||Dn*f-f||\mathbbT?0\|D_{n}\ast f-f\|_{\mathbb{T}}\to0 as n→∞. Fourier coefficients of functions of bounded variation are characterized. The Appendix contains a type of Fubini theorem.  相似文献   

4.
We consider the weighted Bergman spaces HL2(\mathbb Bd, ml){\mathcal {H}L^{2}(\mathbb {B}^{d}, \mu_{\lambda})}, where we set dml(z) = cl(1-|z|2)l dt(z){d\mu_{\lambda}(z) = c_{\lambda}(1-|z|^2)^{\lambda} d\tau(z)}, with τ being the hyperbolic volume measure. These spaces are nonzero if and only if λ > d. For 0 < λ ≤ d, spaces with the same formula for the reproducing kernel can be defined using a Sobolev-type norm. We define Toeplitz operators on these generalized Bergman spaces and investigate their properties. Specifically, we describe classes of symbols for which the corresponding Toeplitz operators can be defined as bounded operators or as a Hilbert–Schmidt operators on the generalized Bergman spaces.  相似文献   

5.
A Toeplitz operator TfT_\phi with symbol f\phi in L(\mathbbD)L^{\infty}({\mathbb{D}}) on the Bergman space A2(\mathbbD)A^{2}({\mathbb{D}}), where \mathbbD\mathbb{D} denotes the open unit disc, is radial if f(z) = f(|z|)\phi(z) = \phi(|z|) a.e. on \mathbbD\mathbb{D}. In this paper, we consider the numerical ranges of such operators. It is shown that all finite line segments, convex hulls of analytic images of \mathbbD\mathbb{D} and closed convex polygonal regions in the plane are the numerical ranges of radial Toeplitz operators. On the other hand, Toeplitz operators TfT_\phi with f\phi harmonic on \mathbbD\mathbb{D} and continuous on [`(\mathbbD)]{\overline{\mathbb{D}}} and radial Toeplitz operators are convexoid, but certain compact quasinilpotent Toeplitz operators are not.  相似文献   

6.
We introduce a new formalism of differential operators for a general associative algebra A. It replaces Grothendieck’s notion of differential operators on a commutative algebra in such a way that derivations of the commutative algebra are replaced by \mathbbDer(A){\mathbb{D}{\rm er}(A)}, the bimodule of double derivations. Our differential operators act not on the algebra A itself but rather on F(A){\mathcal{F}(A)}, a certain ‘Fock space’ associated to any noncommutative algebra A in a functorial way. The corresponding algebra D(F(A)){\mathcal{D}(\mathcal{F}(A))} of differential operators is filtered and gr D(F(A)){\mathcal{D}(\mathcal{F}(A))}, the associated graded algebra, is commutative in some ‘wheeled’ sense. The resulting ‘wheeled’ Poisson structure on gr D(F(A)){\mathcal{D}(\mathcal{F}(A))} is closely related to the double Poisson structure on TA \mathbbDer(A){T_{A} \mathbb{D}{\rm er}(A)} introduced by Van den Bergh. Specifically, we prove that gr D(F(A)) @ F(TA(\mathbbDer(A)),{\mathcal{D}(\mathcal{F}(A))\cong\mathcal{F}(T_{A}(\mathbb{D}{\rm er}(A)),} provided the algebra A is smooth. Our construction is based on replacing vector spaces by the new symmetric monoidal category of wheelspaces. The Fock space F(A){\mathcal{F}(A)} is a commutative algebra in this category (a “commutative wheelgebra”) which is a structure closely related to the notion of wheeled PROP. Similarly, we have Lie, Poisson, etc., wheelgebras. In this language, D(F(A)){\mathcal{D}(\mathcal{F}(A))} becomes the universal enveloping wheelgebra of a Lie wheelgebroid of double derivations. In the second part of the paper, we show, extending a classical construction of Koszul to the noncommutative setting, that any Ricci-flat, torsion-free bimodule connection on \mathbbDer(A){\mathbb{D}{\rm er}(A)} gives rise to a second-order (wheeled) differential operator, a noncommutative analogue of the Batalin-Vilkovisky (BV) operator, that makes F(TA(\mathbbDer(A))){\mathcal{F}(T_{A}(\mathbb{D}{\rm er}(A)))} a BV wheelgebra. In the final section, we explain how the wheeled differential operators D(F(A)){\mathcal{D}(\mathcal{F}(A))} produce ordinary differential operators on the varieties of n-dimensional representations of A for all n ≥ 1.  相似文献   

7.
If b is an inner function, then composition with b induces an endomorphism, β, of L(\mathbbT){L^\infty({\mathbb{T}})} that leaves H(\mathbbT){H^\infty({\mathbb{T}})} invariant. We investigate the structure of the endomorphisms of B(L2(\mathbbT)){B(L^2({\mathbb{T}}))} and B(H2(\mathbbT)){B(H^2({\mathbb{T}}))} that implement β through the representations of L(\mathbbT){L^\infty({\mathbb{T}})} and H(\mathbbT){H^\infty({\mathbb{T}})} in terms of multiplication operators on L2(\mathbbT){L^2({\mathbb{T}})} and H2(\mathbbT){H^2({\mathbb{T}})} . Our analysis, which is based on work of Rochberg and McDonald, will wind its way through the theory of composition operators on spaces of analytic functions to recent work on Cuntz families of isometries and Hilbert C*-modules.  相似文献   

8.
Let L be a divergence form elliptic operator with complex bounded measurable coefficients, ω a positive concave function on (0, ∞) of strictly critical lower type p ω ∈(0, 1] and ρ(t) = t ?1/ω ?1(t ?1) for ${t\in (0,\infty).}Let L be a divergence form elliptic operator with complex bounded measurable coefficients, ω a positive concave function on (0, ∞) of strictly critical lower type p ω ∈(0, 1] and ρ(t) = t −1/ω −1(t −1) for t ? (0,¥).{t\in (0,\infty).} In this paper, the authors introduce the generalized VMO spaces VMOr, L(\mathbb Rn){{\mathop{\rm VMO}_ {\rho, L}({\mathbb R}^n)}} associated with L, and characterize them via tent spaces. As applications, the authors show that (VMOr,L (\mathbb Rn))*=Bw,L*(\mathbb Rn){({\rm VMO}_{\rho,L} ({\mathbb R}^n))^\ast=B_{\omega,L^\ast}({\mathbb R}^n)}, where L * denotes the adjoint operator of L in L2(\mathbb Rn){L^2({\mathbb R}^n)} and Bw,L*(\mathbb Rn){B_{\omega,L^\ast}({\mathbb R}^n)} the Banach completion of the Orlicz–Hardy space Hw,L*(\mathbb Rn){H_{\omega,L^\ast}({\mathbb R}^n)}. Notice that ω(t) = t p for all t ? (0,¥){t\in (0,\infty)} and p ? (0,1]{p\in (0,1]} is a typical example of positive concave functions satisfying the assumptions. In particular, when p = 1, then ρ(t) ≡ 1 and (VMO1, L(\mathbb Rn))*=HL*1(\mathbb Rn){({\mathop{\rm VMO}_{1, L}({\mathbb R}^n)})^\ast=H_{L^\ast}^1({\mathbb R}^n)}, where HL*1(\mathbb Rn){H_{L^\ast}^1({\mathbb R}^n)} was the Hardy space introduced by Hofmann and Mayboroda.  相似文献   

9.
A string is a pair (L, \mathfrakm){(L, \mathfrak{m})} where L ? [0, ¥]{L \in[0, \infty]} and \mathfrakm{\mathfrak{m}} is a positive, possibly unbounded, Borel measure supported on [0, L]; we think of L as the length of the string and of \mathfrakm{\mathfrak{m}} as its mass density. To each string a differential operator acting in the space L2(\mathfrakm){L^2(\mathfrak{m})} is associated. Namely, the Kreĭn–Feller differential operator -D\mathfrakmDx{-D_{\mathfrak{m}}D_x} ; its eigenvalue equation can be written, e.g., as
f(x) + z ò0L f(yd\mathfrakm(y) = 0,    x ? \mathbb Rf(0-) = 0.f^{\prime}(x) + z \int_0^L f(y)\,d\mathfrak{m}(y) = 0,\quad x \in\mathbb R,\ f^{\prime}(0-) = 0.  相似文献   

10.
In this paper we present homogenization results for elliptic degenerate differential equations describing strongly anisotropic media. More precisely, we study the limit as e? 0 \epsilon \to 0 of the following Dirichlet problems with rapidly oscillating periodic coefficients:¶¶ . \cases {{ -div(\alpha(\frac{x}{\epsilon}}, \nabla u) A(\frac{x}{\epsilon}) \nabla u) = f(x) \in L^{\infty}(\Omega) \atop u = 0 su \eth\Omega\ } ¶¶where, p > 1,     a: \Bbb Rn ×\Bbb Rn ? \Bbb R,     a(y,x) ? áA(y)x,x?p/2-1, A ? Mn ×n(\Bbb R) p>1, \quad \alpha : \Bbb R^n \times \Bbb R^n \to \Bbb R, \quad \alpha(y,\xi) \approx \langle A(y)\xi,\xi \rangle ^{p/2-1}, A \in M^{n \times n}(\Bbb R) , A being a measurable periodic matrix such that At(x) = A(x) 3 0A^t(x) = A(x) \ge 0 almost everywhere.¶¶The anisotropy of the medium is described by the following structure hypothesis on the matrix A:¶¶l2/p(x) |x|2 £ áA(x)x,x? £ L 2/p(x) |x|2, \lambda^{2/p}(x) |\xi|^2 \leq \langle A(x)\xi,\xi \rangle \leq \Lambda ^{2/p}(x) |\xi|^2, ¶¶where the weight functions l \lambda and L \Lambda (satisfying suitable summability assumptions) can vanish or blow up, and can also be "moderately" different. The convergence to the homogenized problem is obtained by a classical compensated compactness argument, that had to be extended to two-weight Sobolev spaces.  相似文献   

11.
We study necessary and sufficient conditions for embeddings of Besov and Triebel-Lizorkin spaces of generalized smoothness B(n/p,Y)p,q(\mathbbRn)B^{(n/p,\Psi)}_{p,q}(\mathbb{R}^{n}) and F(n/p,Y)p,q(\mathbbRn)F^{(n/p,\Psi)}_{p,q}(\mathbb{R}^{n}), respectively, into generalized H?lder spaces L¥,rm(·)( \mathbb Rn)\Lambda_{\infty,r}^{\mu(\cdot)}(\ensuremath {\ensuremath {\mathbb {R}}^{n}}). In particular, we are able to characterize optimal embeddings for this class of spaces provided q>1. These results improve the embedding assertions given by the continuity envelopes of B(n/p,Y)p,q(\mathbbRn)B^{(n/p,\Psi)}_{p,q}(\mathbb{R}^{n}) and F(n/p,Y)p,q(\mathbbRn)F^{(n/p,\Psi)}_{p,q}(\mathbb{R}^{n}), which were obtained recently solving an open problem of D.D. Haroske in the classical setting.  相似文献   

12.
Let W n ( \mathbb K {\mathbb K} ) be the Lie algebra of derivations of the polynomial algebra \mathbb K {\mathbb K} [X] := \mathbb K {\mathbb K} [x 1,…,x n ]over an algebraically closed field \mathbb K {\mathbb K} of characteristic zero. A subalgebra L í Wn(\mathbbK) L \subseteq {W_n}(\mathbb{K}) is called polynomial if it is a submodule of the \mathbb K {\mathbb K} [X]-module W n ( \mathbb K {\mathbb K} ). We prove that the centralizer of every nonzero element in L is abelian, provided that L is of rank one. This fact allows one to classify finite-dimensional subalgebras in polynomial Lie algebras of rank one.  相似文献   

13.
Let \mathbb Dn:={z=(z1,?, zn) ? \mathbb Cn:|zj| < 1,   j=1,?, n}{\mathbb {D}^n:=\{z=(z_1,\ldots, z_n)\in \mathbb {C}^n:|z_j| < 1, \;j=1,\ldots, n\}}, and let [`(\mathbbD)]n{\overline{\mathbb{D}}^n} denote its closure in \mathbb Cn{\mathbb {C}^n}. Consider the ring
Cr([`(\mathbbD)]n;\mathbb C) = {f:[`(\mathbbD)]n? \mathbb C:f   is   continuous   and  f(z)=[`(f([`(z)]))]   (z ? [`(\mathbbD)]n)}C_{\rm r}(\overline{\mathbb{D}}^n;\mathbb {C}) =\left\{f: \overline{\mathbb{D}}^n\rightarrow \mathbb {C}:f \,\, {\rm is \,\, continuous \,\, and}\,\, f(z)=\overline{f(\overline{z})} \;(z\in \overline{\mathbb{D}}^n)\right\}  相似文献   

14.
We provide sharp estimates in Lorentz spaces for the solution of the Dirichlet problem associated to the system $\left\{ \begin{array}{ll} A(u)\equiv-D_i (A_{ij}(x) D_j u)=f\\ u \in W^{1,1}_{0}(\Omega, \mathbb {R}^N) \end{array} \right.$ where Ω is an open bounded subset of ${\mathbb R^n}We provide sharp estimates in Lorentz spaces for the solution of the Dirichlet problem associated to the system
{ ll A(u) o -Di (Aij(x) Dj u)=fu ? W1,10(W, \mathbb RN) \left\{ \begin{array}{ll} A(u)\equiv-D_i (A_{ij}(x) D_j u)=f\\ u \in W^{1,1}_{0}(\Omega, \mathbb {R}^N) \end{array} \right.  相似文献   

15.
We establish the following sufficient operator-theoretic condition for a subspace S ì L2 (\mathbbR, dn){S \subset L^2 (\mathbb{R}, d\nu)} to be a reproducing kernel Hilbert space with the Kramer sampling property. If the compression of the unitary group U(t) := e itM generated by the self-adjoint operator M, of multiplication by the independent variable, to S is a semigroup for t ≥ 0, if M has a densely defined, symmetric, simple and regular restriction to S, with deficiency indices (1, 1), and if ν belongs to a suitable large class of Borel measures, then S must be a reproducing kernel Hilbert space with the Kramer sampling property. Furthermore, there is an isometry which acts as multiplication by a measurable function which takes S onto a reproducing kernel Hilbert space of functions which are analytic in a region containing \mathbbR{\mathbb{R}} , and are meromorphic in \mathbbC{\mathbb{C}} . In the process of establishing this result, several new results on the spectra and spectral representations of symmetric operators are proven. It is further observed that there is a large class of de Branges functions E, for which the de Branges spaces H(E) ì L2(\mathbbR, |E(x)|-2dx){\mathcal{H}(E) \subset L^{2}(\mathbb{R}, |E(x)|^{-2}dx)} are examples of subspaces satisfying the conditions of this result.  相似文献   

16.
We consider anisotropic Schrödinger operators H = -D + V H = -{\Delta} + V in L2(\mathbbRn) L^{2}(\mathbb{R}^n) . To certain asymptotic regions F we assign asymptotic Hamiltonians HF such that (a) s(HF) ì sess(H) \sigma(H_F) \subset \sigma_{\textrm{ess}}(H) , (b) states with energies not belonging to s(HF) \sigma(H_F) do not propagate into a neighbourhood of F under the evolution group defined by H. The proof relies on C*-algebra techniques. We can treat in particular potentials that tend asymptotically to different periodic functions in different cones, potentials with oscillation that decays at infinity, as well as some examples considered before by Davies and Simon in [4].  相似文献   

17.
In this paper we establish some regularizing and decay rate estimates for mild solutions of the Debye–Hückel system. We prove that if the initial data belong to the critical Lebesgue space L\fracn2(\mathbbRn){L^{\frac{n}{2}}(\mathbb{R}^{n})} , then the L q -norm ( \fracn2 £ q £ ¥{\frac{n}{2} \leq q \leq \infty}) of the βth order spatial derivative of mild solutions are majorized by K1(K2|b|)|b|t-\frac|b|2-1+\fracn2q{K_{1}(K_{2}|\beta|)^{|\beta|}t^{-\frac{|\beta|}{2}-1+\frac{n}{2q}}} for some constants K 1 and K 2. These estimates particularly imply that mild solutions are analytic in the space variable, and provide decay estimates in the time variable for higher-order derivatives of mild solutions. We also prove that similar estimates also hold for mild solutions whose initial data belong to the critical homogeneous Besov space [(B)\dot]-2+\fracnpp,¥(\mathbbRn){\dot{B}^{-2+\frac{n}{p}}_{p,\infty}(\mathbb{R}^n)} ( \fracn2 < p < n{\frac{n}{2} < p < n}).  相似文献   

18.
We show that the result on multipliers of Orlicz spaces holds in general. Namely, under the assumption that three Young functions Φ1, Φ2 and Φ, generating corresponding Orlicz spaces, satisfy the estimate ${\Phi^{-1}(u) \leq C \Phi_1^{-1}(u)\, \Phi_2^{-1}(u)}We show that the result on multipliers of Orlicz spaces holds in general. Namely, under the assumption that three Young functions Φ1, Φ2 and Φ, generating corresponding Orlicz spaces, satisfy the estimate F-1(u) £ C F1-1(u) F2-1(u){\Phi^{-1}(u) \leq C \Phi_1^{-1}(u)\, \Phi_2^{-1}(u)} for all u > 0, we prove that if the pointwise product xy belongs to L Φ(μ) for all y ? LF1(m){y \in L^{\Phi_1}(\mu)}, then x ? LF2(m){x \in L^{\Phi_2}(\mu)}. The result with some restrictions either on Young functions or on the measure μ was proved by Maligranda and Persson (Indag. Math. 51 (1989), 323–338). Our result holds for any collection of three Young functions satisfying the above estimate and for an arbitrary complete σ-finite measure μ.  相似文献   

19.
The main results of the paper are: (1) The boundedness of singular integral operators in the variable exponent Lebesgue spaces L p(·)(Γ, w) on a class of composed Carleson curves Γ where the weights w have a finite set of oscillating singularities. The proof of this result is based on the boundedness of Mellin pseudodifferential operators on the spaces Lp(·)(\mathbbR +,dm){L^{p(\cdot )}(\mathbb{R} _{+},d\mu)} where dμ is an invariant measure on multiplicative group ${\mathbb{R}_{+}=\left\{r\in \mathbb{R}:r >0 \right\}}${\mathbb{R}_{+}=\left\{r\in \mathbb{R}:r >0 \right\}}. (2) Criterion of local invertibility of singular integral operators with piecewise slowly oscillating coefficients acting on L p(·)(Γ, w) spaces. We obtain this criterion from the corresponding criteria of local invertibility at the point 0 of Mellin pseudodifferential operators on \mathbbR+{\mathbb{R}_{+}} and local invertibility of singular integral operators on \mathbbR{\mathbb{R}}. (3) Criterion of Fredholmness of singular integral operators in the variable exponent Lebesgue spaces L p(·)(Γ, w) where Γ belongs to a class of composed Carleson curves slowly oscillating at the nodes, and the weight w has a finite set of slowly oscillating singularities.  相似文献   

20.
In this work we prove that the solutions
u ? Lq(-T, 0,H1,q(W,\mathbbRN)) ?C0,l([`(Q)],\mathbbRN)u\in L^{q}(-T, 0,H^{1,q}(\Omega,\mathbb{R}^{N})) \cap C^{0,\lambda}(\overline{Q},\mathbb{R}^{N})  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号