首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Rare earth metal complexes based on novel linked bis(beta-diketiminato) ligands have been prepared via amine elimination and their structural characterisation revealed that the linker unit has significant influence on the geometry and coordination mode of the ancillary ligand.  相似文献   

2.
Starting material KN(H)C(6)H(3)-2,6-F(2) was prepared via a transamination reaction from KNH(2) and 2,6-F(2)C(6)H(3)NH(2) in THF and crystallized from 1,4-dioxane (diox) as the three-dimensional polymer [(diox)(1.5)K{N(H)-2,6-F(2)C(6)H(3)}.diox(0.5)](infinity) (1). The metathesis reaction of (THF)(4)CaI(2) with KN(Me)Ph in THF yields monomeric (THF)(4)Ca[N(Me)Ph](2) (2) with a nearly linear N-Ca-N moiety of 179.84(8) degrees . The metathesis reaction of (THF)(4)CaI(2) with KN(H)Mes yields trinuclear (THF)(6)Ca(3)[N(H)Mes](6) (3) with a linear Ca(3) fragment and bridging 2,4,6-trimethylphenylamido groups. The reaction of 1 with (THF)(4)CaI(2) gives dinuclear (THF)(5)Ca(2)[N(H)-2,6-F(2)C(6)H(3)](4).2THF (4) with three bridging and one terminally bound 2,6-difluorophenylamide. A similar reaction of (THF)(5)SrI(2) with KN(H)-2,6-F(2)C(6)H(3) yields dinuclear (THF)(6)Sr(2)[N(H)-2,6-F(2)C(6)H(3)](3)I.THF (5) in which the iodide anion binds terminally. This iodide ligand cannot be substituted as easily by excess KN(H)-2,6-F(2)C(6)H(3). The metathesis reaction of (THF)(5)BaI(2) with KN(H)-2,6-F(2)C(6)H(3) leads to the formation of [(THF)(2)Ba{N(H)-2,6-F(2)C(6)H(3)}(2)](infinity) (6) which crystallizes as a one-dimensional polymer with bridging 2,6-difluorophenylamide anions and additional Ba-F-bonds.  相似文献   

3.
A series of novel neutral pentacoordinate silicon(IV) complexes with SiClSN(2)C, SiBrSN(2)C, SiSN(3)C, SiSON(2)C, SiS(2)N(2)C, SiSeSN(2)C and SiTeSN(2)C skeletons (compounds 1-12) was synthesised, starting from PhSiCl(3), PhSiBr(3), PhSi(NCO)(3), MeSiCl(3) or C(6)F(5)SiCl(3). Compounds 1-12 contain (i) a tridentate dianionic N,N,S chelate ligand (derived from 2-{[(pyridin-2-yl)methyl]amino}benzenethiol), (ii) a phenyl, methyl or pentafluorophenyl group and (iii) a monodentate monoanionic ligand (Cl, Br, NCO, NCS, N(3), OS(O)(2)CF(3), OPh, SPh, SePh, TePh). The pentacoordinate silicon(iv) complexes 1-12 were characterised by elemental analyses, NMR spectroscopic studies in the solid state and in solution and crystal structure analyses. These experimental investigations were complemented by computational studies.  相似文献   

4.
Bulky salen CuL(x) derived from aliphatic polymethylene diamines, H(2)N-(CH(2))(x)-NH(2), where n = 2-6, and 3,5-di-t-butylsalicylaldehyde (H(2)L(x)) and some corresponding tetrahydrosalan complexes (CuL(x)') have been synthesized and characterized by their IR, UV-vis absorption and EPR spectra, by magnetic moments and by cyclic voltammetry in acetonitrile (for H(2)L(x)) and DMF (for CuL(x)). Complexes CuL(x) and CuL(x)' are magnetically normal (mu(exp) = 1.83-1.91 mu(B)). EPR spectra CuL(x) characterized by the axial g and A(Cu) tensors with g parallel > g perpendicular and without (14)N-shf resolution in CHCl(3)/toluene at 300 and 150K. The CV studies on acetonitrile solutions of H(2)L(x) revealed a well-defined quasi-reversible redox wave at E(1/2) = 0.95-1.15 V versus Ag/AgCl but CV of the CuL(x) complexes in DMF exhibit weak pronounced irreversible oxidation waves at E(pa)(1) = 0.51 - 098 V and E(pa)(2) = 1.16 - 1.33 V attributable to metal centered Cu(II/III) and ligand centered CuL(x)/CuL(x)*+ couples, respectively. A poorly defined wave was observed for the quasi-reversible reduction Cu(II)/Cu(I) at potentials less than -1.0 V.  相似文献   

5.
近年来对近红外发光稀土配合物的研究逐渐引起人们的重视[1 7]。本文合成了双水杨醛缩乙二胺(C16H16N2O2,H2L)合Nd(Ⅲ)、Gd(Ⅲ)、Yb(Ⅲ)配合物,报道该Shiff碱配体对Nd(Ⅲ)、Yb(Ⅲ)离子近红外发光的敏化作用。1 实验部分浓盐酸和盐酸羟胺溶解稀土氧化物(广东珠江冶炼厂产品,纯度大于99 95%)并将所得溶液蒸至近干,得到相应的稀土氯化物,加入无水乙醇溶解得LnCl3(Ln=Nd,Yb,Gd),回流条件下将稀土氯化物乙醇溶液逐滴加入双水杨醛缩乙二胺[8]乙醇溶液中,稀土氯化物和配体为1∶2(V∶V)。回流反应10h后得…  相似文献   

6.
分别以水杨酰肼和癸二酰氯,或水杨酰氯和癸二酸二酰肼为原料合成了癸二酸二水杨酰肼(5),其结构经1H NMR, 13C NMR, MS和元素分析表征.合成5的较适宜反应条件为:癸二酰氯13 mmol, n(水杨酰肼) ∶ n(癸二酰氯)=2.2 ∶ 1.0,三乙胺作缚酸剂,DMF作溶剂,于90 ℃反应7 h,收率80%.  相似文献   

7.
A series of rhodium complexes, [Rh(cod)(NHC-F(x))(OH(2))] (cod = 1,5-cyclooctadiene; NHC = N-heterocyclic carbene), incorporating anionic N-heterocyclic carbenes with 2-tert-butylmalonyl backbones and 2,6-dimethylphenyl (x = 0), 2,6-difluorophenyl (x = 4), 2,4,6-trifluorophenyl (x = 6), and pentafluorophenyl (x = 10) N,N'-substituents, respectively, has been prepared by deprotonation of the corresponding zwitterionic precursors with potassium hexamethyldisilazide, followed by immediate reaction of the resulting potassium salts with [{RhCl(cod)}(2)]. These complexes could be converted to the related carbonyl derivatives [Rh(CO)(2)(NHC-F(x))(OH(2))] by displacement of the COD ligand with CO. IR and NMR spectroscopy demonstrated that the degree of fluorination of the N-aryl substituents has a considerable influence on the σ-donating and π-accepting properties of the carbene ligands and could be effectively used to tune the electronic properties of the metal center. The carbonyl groups on the carbene ligand backbone provided a particularly sensitive probe for the assessment of the metal-to-ligand π donation. The ortho-fluorine substituents on the N-aryl groups in the carbene ligands interacted with the other ligands on rhodium, determining the conformation of the complexes and creating a pocket suitable for the coordination of water to the metal center. Computational studies were used to explain the influence of the fluorinated N-substituents on the electronic properties of the ligand and evaluate the relative contribution of the σ- and π-interactions to the ligand-metal interaction.  相似文献   

8.
Treatment of a solid mixture of KBH4 with six equivalents of 3,5-diisopropylpyrazole (iPr2pzH) at 180 °C afforded KTpiPr2(iPr2PzH)3 in 53% yield. KBpiPr2 was synthesized in 56% yield by treatment of a 1:2 M ratio of KBH4 and iPr2PzH in refluxing dimethylacetamide. Treatment of MI2 (M = Ca, Sr, Ba) with two equivalents of KBp or KBpiPr2 in tetrahydrofuran afforded MBp2(THF)2 (M = Ca, 64%, M = Sr, 81%), BaBp2(THF)4 (32%), and M(BpiPr2)2(THF)2 (M = Ca, 63%; M = Sr, 61%, M = Ba, 48%) as colorless crystalline solids upon workup. These complexes were characterized by spectral and analytical techniques and by X-ray crystal structure determinations of all complexes except KBpiPr2. KTpiPr2(iPr2PzH)3 contains one κ3-N,N,N-TpiPr2 ligand and three κ1-iPr2pzH ligands, with overall distorted octahedral geometry about the K ion. The iPr2PzH nitrogen-hydrogen bonds are engaged in intramolecular hydrogen bonding to the 2-nitrogen atoms of the TpiPr2 ligand. The solid state structures of MBp2(THF)2, BaBp2(THF)4, and M(BpiPr2)2(THF)2 contain κ3-N,N,H Bp and BpiPr2 ligands, which form through metal-nitrogen bond formation to the 2-nitrogen atoms of the pyrazolyl fragments and metal-hydrogen bond formation to one boron-bound hydrogen atom per Bp ligand. SrBp2(THF)2has the shortest metal-hydrogen interactions among the series. A combination of preparative sublimations, solid state decomposition temperatures, and thermogravimetric analysis demonstrated that MBp2(THF)2, BaBp2(THF)4, and M(BpiPr2)2(THF)2 undergo solid state decomposition at moderate temperatures.  相似文献   

9.
Eight alkaline and alkaline-earth compounds derived from 2,4-dinitroimidazole (2,4-HDNI) were synthesized and characterized by elemental analysis, FT-IR, and TG–DSC, of which K(2,4-DNI) (1), Rb(2,4-DNI)(2,4-HDNI)(H2O)2 (2), and Ba(2,4-DNI)2(H2O)4 (3) were characterized by single-crystal X-ray diffraction analysis. All the three compounds were crystallized from water, but 1 was an anhydrate. The coordination number in 1 and 3 is 10, but in 2 is 9. The 2,4-DNI adopts either η3, η2, or η1 coordination modes depending on the metal cation. In 3, there is an inversion center located on the metal. Only in 2 does water play an important role for the construction of the structure; in 3 it is a hydrogen bonding participant. TG–DSC analyses of 1 were also performed, and non-isothermal decomposition reaction kinetics were obtained.  相似文献   

10.
Treatment of MIII(Pc)(acac) (M = Sm, Eu, Gd; Pc = phthalocyaninate; acac = acetylacetonate), generated in situ, with 3-(3-pentyloxy)phthalonitrile in the presence of 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) in n-pentanol affords racemic mixtures of the chiral double-deckers MIII(Pc)[Pc(OC5H11)4] [Pc(OC5H11)4 = 1,8,15,22-tetrakis(3-pentyloxy)phthalocyaninate], which have been spectroscopically and structurally characterised.  相似文献   

11.
The addition of 2 equiv of N,N',N' '-triisopropylguanidine (guanH(2)) to Zr(CH(2)Ph)(4) produced the bis(guanidinato)bis(benzyl)zirconium complex [((i)PrNH)C(N(i)Pr)(2)](2)Zr(CH(2)Ph)(2) (1). The mono(guanidinato) complex [((i)PrN)(2)C(NH(i)Pr)]ZrCl(3) (2) was accessible by the reaction of 2 equiv of guanH(2) with ZrCl(4). Guanidinium hydrochloride, [C(NH(i)Pr)(3)]Cl, is a byproduct of this reaction. When crystallized from THF, complex 2 was isolated as the THF adduct [((i)PrNH)C(N(i)Pr)(2)]ZrCl(3)(THF) (2-THF). The mixed cyclopentadienyl guanidinato complex [eta(5)-1,3-(Me(3)Si)(2)C(5)H(3)][((i)PrNH)C(N(i)Pr)(2)]ZrCl(2) (3) was prepared by treatment of [1,3-(Me(3)Si)(2)C(5)H(3)]ZrCl(3) with the in situ generated lithium triisopropylguanidinate salt. The reaction of guanH(2) with [1,3-(Me(3)Si)(2)C(5)H(3)]ZrMe(3) affords the dimethyl derivative [eta(5)-1,3-(Me(3)Si)(2)C(5)H(3)][((i)PrNH)C(N(i)Pr)(2)]ZrMe(2) (4). Definitive evidence for the molecular structures of these products is provided through single-crystal X-ray characterization of 1, 2-THF, and 3, which are presented. The extent of pi delocalization within the guanidinato ligand is discussed in the context of the metrical parameters obtained from these structural studies.  相似文献   

12.
The reaction of o-C6H4(AsMe2)2 with VCl4 in anhydrous CCl4 produces orange eight-coordinate [VCl4{o-C6H4(AsMe2)2}2], whilst in CH2Cl2 the product is the brown, six-coordinate [VCl4{o-C6H4(AsMe2)2}]. In dilute CH2Cl2 solution slow decomposition occurs to form the VIII complex [V2Cl6{o-C6H4(AsMe2)2}2]. Six-coordination is also found in [VCl4{MeC(CH2AsMe2)3}] and [VCl4{Et3As)2]. Hydrolysis of these complexes occurs readily to form vanadyl (VO2+) species, pure samples of which are obtained by reaction of [VOCl2(thf)2(H2O)] with the arsines to form green [VOCl2{o-C6H4(AsMe2)2}], [VOCl2{MeC(CH2AsMe2)3}(H2O)] and [VOCl2(Et3As)2]. Green [VOCl2(o-C6H4(PMe2)2}] is formed from [VOCl2(thf)2(H2O)] and the ligand. The [VOCl2{o-C6H4(PMe2)2}] decomposes in thf solution open to air to form the diphosphine dioxide complex [VO{o-C6H4(P(O)Me2)2}2(H2O)]Cl2, but in contrast, the products formed from similar treatment of [VCl4{o-C6H4(AsMe2)2}x] or [VOCl2{o-C6H4(AsMe2)2}] contain the novel arsenic(V) cation [o-C6H4(AsMe2Cl)(μ-O)(AsMe2)]+. X-ray crystal structures are reported for [V2Cl6{o-C6H4(AsMe2)2}2], [VO(H2O){o-C6H4(P(O)Me2)2}2]Cl2, [o-C6H4(AsMe2Cl)(μ-O)(AsMe2)]Cl·[VO(H2O)3Cl2] and powder neutron diffraction data for [VCl4{o-C6H4(AsMe2)2}2].  相似文献   

13.
Schiff 碱配体包含着酚氧桥氧原子和亚胺氮原子这类强电子给体,他们与过渡金属原子有较强的配位能力,在催化、抗癌、抗菌、抗病毒等方面都有广泛的应用[1-4],受到人们的高度关注.  相似文献   

14.
Benzoyl azides, ArC(O)N3, 2, (Ar = phenyl or substituted phenyl), react with [Pd2Cl2(dppm)2], 1, [dppm = bis(diphenylphosphino)methane] with the formation of novel [Pd2Cl2(mu-NC(O)Ar)(dppm)2], 3, benzoylnitrene complexes that were structurally characterised by multinuclear magnetic resonance and IR spectroscopy and, in several instances, by single crystal X-ray diffraction. As shown by crystallographic studies, the C2P4Pd2 rings adopt extended twist-boat conformations with methylene groups bending towards the bridging benzoylimido moieties. X-ray diffraction studies have revealed the chiral nature of the imido complexes, the chiral element being the propeller-like C2P4Pd2 ring. Structural data accumulated on complexes 3 such as short C-N distances (1.32 A), elongated C=O bonds (1.30 A) as well as the outstandingly high barrier to internal rotation around the N-C(O) linkage (88.3 kJ mol(-1)) are in line with extensive ppi-ppi interaction between the bridging nitrogen and the carbonyl carbon atoms. Theoretical calculations indicate an electron shift from the dimer towards the apical nitrogen atom, which, in turn, facilitates the donation of electrons towards the carbonyl moiety. To elucidate the structure-reactivity relationship of benzoyl azides towards 1, crystallographic and solution IR spectroscopic studies were carried out on a series of para-substituted benzoyl azides. The reaction obeys the Hammett equation. The large positive value of the reaction constant indicates that the azides act as electrophiles in the reaction studied. The enhanced reactivity of 2-nitrobenzoyl azide has been attributed to a decreased conjugation of the phenyl and carbonyl moieties in this reagent.  相似文献   

15.
Stable, pentacoordinated iridium(I) complexes have been synthesised by the replacement of the chlorine in IrCO(PPh3)2Cl by bidentate chelating ligands such as β-diketones, N-benzoyl-N-phenyl hydroxylamine, salicylaldehyde, 8-hydroxyquinoline, 2-hydroxybenzophenone and 2-hydroxy 4-methoxybenzophenone. Most of them gave stable oxygen adducts IrCO(PPh3)2(L)O2 and all of them underwent oxidative addition with bromine in methylene chloride giving IrCO(PPh3)2(L)Br2. These chelated iridium(I) compounds reacted with liquid sulphur dioxide to produce two types of SO2 insertion products.  相似文献   

16.
Treatment of the imines [ArN=CH-CH=NAr] and [ArN=CH-2-py] (Ar=2,6-Pr2iC6H3) with AlMe3 in toluene affords the highly crystalline complexes [AlMe2{ArN-CH2-C(Me)=NAr}] (1) and [AlMe2{ArN-CH(Me)-2-py}] (2); the molecular structures of 1 and 2 show that the aluminiums are bonded to imino-amide and pyridyl-amide ligands respectively arising from methyl group transfer from the aluminium centre to the backbone carbon of the imine ligand.  相似文献   

17.
The thiosemicarbazide and hydrazide Cu(II) complexes, [Cu3L21(py)4Cl2] (1), [Cu(HL2)py] (2) and [Cu(HL3)py] (3), (H2L1 = 1-picolinoylthiosemicarbazide, H3L2 = N′-(2-hydroxybenzylidene)-3-hydroxy-2-naphthohydrazide, H3L3 = 2-hydroxy-N′-((2-hydroxy-naphthalen-1-yl)methylene)benzohydrazide) have been prepared and characterized through physicochemical and spectroscopic methods as well as X-ray crystallography. Complex 1 has a centrosymmetric structure with –N–N– bridged Cu3 skeleton. Neighboring molecules are linked into a 3D supermolecular framework by π–π stacking interactions, N–H···Cl and C–H···Cl hydrogen bonds. Complexes 2 and 3 have similar planar structures but different dimers formed by concomitant Cu···N and Cu···O interactions, respectively. Solvent accessible voids with a volume of 391 ?3 are included in the structure of complex 2, indicating that this complex is a potential host candidate. Thermogravimetric analysis shows that the three complexes are stable up to 100 °C.  相似文献   

18.
19.
Double hydroxides containing alkaline earth and iron(III) ions were synthesised by the co-precipitation method. The solid materials obtained were characterised by a range of instrumental methods (powder X-ray diffractometry, thermogravimetry, scanning electron microscopy, energy dispersive X-ray fluorescence spectrometry, elemental maps, and infrared spectroscopy). It was found that the Ca(II)Fe(III), Mg(II)Fe(III), and Ba(II)Fe(III) double hydroxides had layered structures, while Sr(II)Fe(III) had not. The optimum conditions for synthesis of Ca(II)Fe(III)-layered double hydroxides (materials to be used in further studies) were also elaborated.  相似文献   

20.
Binuclear ruthenium(III) complexes containing a binucleating Schiff base ligand, L and Ph3P or Ph3As, [RuX2(EPh3)2]2L (X = Cl or Br; E = P or As) have been prepared by reacting [RuCl3(PPh3)3], [RuCl3(AsPh3)3], [RuBr3(AsPh3)3] and [RuBr3(PPh3)2(MeOH)] with Schiff bases in a 2:1 molar ratio. The Schiff bases used in this study were prepared by condensing the appropriate diamine with salicylaldehyde or benzoylacetone in a 1:2 molar ratio respectively. The complexes were characterised by analytical, spectral (i.r., electronic, e.p.r.) and electrochemical data. An octahedral structure has been proposed for all the new ligand-bridged binuclear RuIII complexes. The new complexes have been used as catalysts in aryl–aryl couplings and also subjected to antifungal activity studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号