首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
A new method is described for calibrating a five-hole probe for extending the useful measurement range up to flow angularities of 85°. The calibration method involves adjustment of the calibration coefficients to allow valid calibration at larger flow angles. The extended range calibration curves for flow angularity, total and static pressures are presented. The present range is valid in pitch only when the yaw ports are nulled.  相似文献   

2.
This study considers the large interaction parameter magnetoaerodynamic boundary layer associated with the free stream flow of a conducting fluid over an infinitely long circular insulator cylinder with the applied magnetic field normal to the distant free stream flow. The investigation is conducted in two parts; a theoretical solution of the associated boundary layer equations and a qualitative experimental investigation to allow visualization of flow separation caused by the magnetic field. The general integral formulation of Galerkin-Kantorovich-Dorodnitsyn is used to determine the boundary layer thickness, momentum thickness, displacement thickness, approximate separation point, and velocity profiles.  相似文献   

3.
4.
Optical Stokes flow estimation: an imaging-based control approach   总被引:2,自引:5,他引:2  
We present an approach to particle image velocimetry based on optical flow estimation subject to physical constraints. Admissible flow fields are restricted to vector fields satifying the Stokes equation. The latter equation includes control variables that allow to control the optical flow so as to fit to the apparent velocities of particles in a given image pair. We show that when the real unknown flow observed through image measurements conforms to the physical assumption underlying the Stokes equation, the control variables allow for a physical interpretation in terms of pressure distribution and forces acting on the fluid. Although this physical interpretation is lost if the assumptions do not hold, our approach still allows for reliably estimating more general and highly non-rigid flows from image pairs and is able to outperform cross-correlation based techniques.  相似文献   

5.
The main interest of the present paper is to generate exact solutions to the steady Navier-Stokes equations for the incompressible Newtonian viscous electrically conducting fluid flow motion due to a disk rotating with a constant angular speed. In place of the traditional von Karman’s axisymmetric evolution of the flow, the rotational non-axisymmetric stationary conducting flow is taken into consideration here. As a consequence, for an external uniform magnetic field applied perpendicular to the plane of the disk, the governing equations allow an exact solution to develop, which is influenced by a fixed point on the disk and also is bounded everywhere in the normal direction to the wall.  相似文献   

6.
By means of analysis equations for heat transfer performance based on number of heat transfer units were found, that allow to solve in a simple way single-pass and multipass heat exchanger problems when there are counterflow, crossflow and cocurrent modes of flow in any combination. There is no need to use external information such as the effectiveness concept or the correction factor F. The analysis gives new results which are at variance with traditional heat exchanger analysis when crossflow or cocurrent flow is involved.  相似文献   

7.
 We propose in this work to characterize the unsteady behavior of a flow generated by wall injection and encountering an obstacle. This sutdy concerns the prediction of the stability of segmented solid propellant rocket motors. The simulation of such a system is studied in cold flow, which makes it possible to analyze the basic phenomena and the energy transfer mechanisms of the flow. The results obtained allow the identification of the vortex structures by visualization inside a shear layer created at the top of an obstacle. The analysis of the pressure field shows that the dynamic parameters (mass flow rate or flow velocity) generate a phenomenon of selective excitation and of longitudinal acoustic modes amplification, which is accompanied by an energy transfer between modes. Received: 30 October 1997 / Accepted: 8 June 1998  相似文献   

8.
The rheological characterisation of concentrated shear thickening materials suspensions is challenging, as complicated and occasionally discontinuous rheograms are produced. Wall slip is often apparent and when combined with a shear thickening fluid the usual means of calculating rim shear stress in torsional flow is inaccurate due to a more complex flow field. As the flow is no longer “controlled”, a rheological model must be assumed and the wall boundary conditions are redefined to allow for slip. A technique is described where, by examining the angular velocity response in very low torque experiments, it is possible to indirectly measure the wall slip velocity. The suspension is then tested at higher applied torques and different rheometer gaps. The results are integrated numerically to produce shear stress and shear rate values. This enables the measurement of true suspension bulk flow properties and wall slip velocity, with simple rheological models describing the observed complex rheograms.  相似文献   

9.
NaCl-water saturated kaolinite is observed to show pH-dependent electro-osmotic flow. This behaviour is modelled by computing the electro-osmotic flow between parallel planes as a function of their electrical surface charge density. The latter can be related to pH through the physico-chemical properties of the material. In case of kaolinite particles, isomorphic substitution and two surface dissociation reactions allow to predict the pH-dependence of the electrical charge density and thus the variations of electro-osmotic flows with pH. To cite this article: P. Dangla et al., C. R. Mecanique 332 (2004).  相似文献   

10.
We consider the flow, which is induced by differential heating on the boundaries of a porous cavity heated from below. In particular we allow the sidewalls to have the same cold temperature as the upper surface, and thus the problem is a variant of the Darcy-Bénard convection problem, but one where there is flow at all non-zero Grashof numbers. Attention is focused on how the flow and heat transfer is affected by variations in the cavity aspect ratio, the Grashof number and the Darcy number. The flow becomes weaker as the Darcy number decreases from the pure fluid limit towards the Darcy-flow limit. In addition the number of cells which form in the cavity varies primarily with the aspect ratio and is always even due to the symmetry imposed by the cold sidewalls.  相似文献   

11.
The hydrodynamics of processes occurring in explosion of condensed explosives in air is considered. The physical model, computation technique, and results of simulation of a two-dimensional hydrodynamic flow arising in explosion of cylindrical charges are discussed. In this case, the explosions are considered at some distance above the ground. To close the gas-dynamics equations, the Jones–Wilkins–Lee equation of state is used. The results of calculation allow one to obtain a detailed space–time pattern of the arising flow and to study the origination, propagation, and subsequent attenuation of shock waves. Cylindrical charges of the same mass but with different diameter-to-length ratios are considered. It is shown that the charge shape can render essential influence on dynamics of flow and the parameters of shock waves (in the near and medium fields of explosion).  相似文献   

12.
We present in this study an analytic solution, valid for intermediate Reynolds numbers, of the Poiseuille flow perturbation in a channel. We use a method based on the solution of a linearized form of perturbation equations. The analytic solutions allow us to determine the symmetric and antisymmetric eigenmodes. For any given entry velocity profile in the channel slightly perturbed from Poiseuille flow, the complete flow solution is obtained by using an appropriate orthonormalisation procedure for the bases of the two types of eigenfunctions. To cite this article: A. Hifdi, J. Khalid Naciri, C. R. Mecanique 332 (2004).  相似文献   

13.
Using experimental data from Particle Image Velocimetry (PIV) measurements, coherent structures of a transitional spatially developing boundary layer are determined. The coherent structures are determined utilizing the Proper Orthogonal Decomposition (POD), which is based on an expansion of the flow field variables into a set of eigenfunctions or modes. For having constant and reproducible flow field conditions, the flow is artificially excited by means of periodic velocity fluctuations. The used excitation device allows the generation of different transition scenarios, where this paper focuses on the case of thefundamental transition. Phase locked excitation signals allow the recording of instantaneous velocity fields of the flow field at certain instants of time. It can be shown that PIV is a suitable technique to provide experimental data for POD. The results of the POD show that already a small number of modes cover most of the kinetic energy of the flow.  相似文献   

14.
In this study, non-intrusive pressure drop, liquid base film thickness distribution, and wave behavior measurements have been obtained for 206 horizontal annular two-phase (air–water) flow conditions in 8.8, 15.1, and 26.3 mm ID tubes. Reliable wave velocity measurements are available for 185 of these flow conditions, while 131 flow conditions allow for reliable wave frequency measurements. The wave velocity is found to be predicted to within 9% by gas friction velocity and 6% by an optimized correlation of similar structure. Wave frequency can also be predicted with a simple correlation to within 5% for the 8.8 and 15.1 mm tubes, but a separate relation is required to explain 26.3 mm frequency data. The differences in wave behavior between the annular and wavy-annular/wavy regimes are also discussed.  相似文献   

15.
This paper presents a manufactured solution (MS), resembling a two-dimensional, steady, wall-bounded, incompressible, turbulent flow for RANS codes verification. The specified flow field satisfies mass conservation, but requires additional source terms in the momentum equations. To also allow verification of the correct implementation of the turbulence models transport equations, the proposed MS exhibits most features of a true near-wall turbulent flow. The model is suited for testing six eddy-viscosity turbulence models: the one-equation models of Spalart and Allmaras and Menter; the standard two-equation k–ε model and the low-Reynolds version proposed by Chien; the TNT and BSL versions of the k–ω model.  相似文献   

16.
A numerical method of resolution of laminar incompressible flows in cones of revolution is proposed by asymptotic expansions in powers of 1/r (r radius vector). Remarks on linearity allow to calculate all wanted terms, function after function, by fourth-order Runge-Kutta process. Two examples are selected: the flow between two symmetric cones and one between a cone and a plane. The study of the flow between two symmetric cones as a function of the aperture angle reveals the existence of two patterns separated by a discontinuity at approximately 156°.  相似文献   

17.
For steady non-swirling axisymmetric flow () of an incompressible fluid two invariants of the rate of strain dyadic D are introduced, which directly enter into the expression for D. This being the case they - in conjunction with the vorticity - allow a flow classification into strong and weak flows. For a generalized Newtonian fluid an expression for the viscosity function is listed, which reduces for model fluids to correct results in shearing and, respectively, extensional flow. A possible modification of is proposed, which involves the relative vorticity as well (quasi-Newtonian fluid), since this allows to adjust itself to the local nature of the flow. As such it should prove useful for numerical calculation. Received April 23, 1998  相似文献   

18.
The problem of determining the specific mass flow of sediment entrained by a liquid flow passing above the sand bottom is studied. The boundary-value problem for a two-phase mixture of the liquid and solid particles in the active bottom layer is solved, and a general formula for determining the specific mass flow of sediment is derived. Constraints imposed on the rheological model of a moving mixture, which allow the phenomenological parameter (concentration of particles in the active layer of the mixture) to be eliminated from the model, are found. Within the framework of the proposed rheological model, the equation of riverbed deformations in the case of a sand bottom is obtained. __________ Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 50, No. 3, pp. 131–139, May–June, 2009.  相似文献   

19.
Methods to immerse walls in a structured mesh are examined in the context of fully compressible solutions of the Navier–Stokes equations. The ghost cell approach is tested along with compressible conservative immersed boundaries in canonical flow configurations; the reflexion of pressure waves on walls arbitrarily inclined on a cartesian mesh is studied, and mass conservation issues examined in both a channel flow inclined at various angles and flow past a cylinder. Then, results from Large Eddy Simulation of a flow past a rectangular cylinder and a transonic cavity flow are compared against experiments, using either a multi-block mesh conforming to the wall or immersed boundaries. Different strategies to account for unresolved transport by velocity fluctuations in LES are also compared. It is found that immersed boundaries allow for reproducing most of the coupling between flow instabilities and pressure-signal properties observed in the transonic cavity flow. To conclude, the complex geometry of a trapped vortex combustor, including a cavity, is simulated and results compared against experiments.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号