首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recently Prof. Chien Wei-zang pointed out that in certain cases, by means of ordinary Lagrange multiplier method, some of undetermined Lagrange multipliers may turn out to be zero during variation. This is a critical state of variation. In this critical state, the corresponding variational constraint can not be eliminated by means of simple Lagrange multiplier method. This is indeed the case when one tries to eliminate the constraint condition of strain-stress relation in variational principle of minimum complementary energy by the method of Lagrange multiplier.By means of Lagrange multiplier method, one can only derive, from minimum complementary energy principle, the Hellinger-Reissner Principle, in which only two type of in-dependent variables, stresses and displacements, exist in the new functional. Hence Prof. Chien introduced the high-order Lagrang multiplier method bu adding the quadratic terms.to original functions. The purpose of this paper is to show that by adding to original functionals one  相似文献   

2.
以S809翼型为研究对象,用CFD数值模拟计算的方法研究了在失速条件下,风力机翼型上下表面同时开缝的被动控制策略对翼型空气动力学特性的影响。采用基于速度耦合的SIMPLEC算法进行数值模拟,将四种常用的湍流模型(Spalart-Allmaras、k-e、k-w、k-w-SST)在12°和24°攻角下的计算结果和实验数据对比,得出了最优于翼型计算的湍流模型为k-w-SST。分析了缝隙位置、宽度和斜率对翼型气动性能的影响。结果表明:当开缝位置位于分离点附近时,翼型气动性能最优;当缝隙宽度为弦长的2%时,翼型气动性能最优;当缝隙和弦线的夹角为75°时,翼型气动性能最优,且在攻角超过24°时开缝对翼型的气动性能有不利影响。  相似文献   

3.
The effect of the leading edge shape and the turbulence scale on laminar-turbulent transition in the flat-plate boundary layer due to grid turbulence is investigated. In the experiments, the turbulence scale was changed by a factor of three and the bluntness radius of the edge by a factor of four, all other factors being fixed. It is shown that on the plate with a sharp edge the fluctuation growth rate and the laminar-turbulent transition point depend nonmonotonically on the turbulence scale. On the blunt plate transition occurs considerably earlier than on the sharp plate.  相似文献   

4.
5.
为了得到壁面温度在不同来流速度、不同湍流强度条件下对边界层转捩与减阻的影响规律,本文采用Transitionk-kl-ω模型对低来流速度下无压力梯度的光滑平板进行了数值模拟。结果表明,随着来流速度的升高,壁温升高所起到的减阻效果更好,即高来流速度对壁面温度更为敏感。当来流处于中高湍流强度下时,壁温升高能起到推迟转捩的作用,且随着湍流强度的升高,转捩推迟的效果越好,但减阻效果正好相反;当来流处于低湍流强度下时,壁温升高会使得转捩提前发生。壁温升高抑制了边界层内流体的脉动程度,使得层流的稳态不易被破坏,流动更加稳定;同时,壁温升高使得边界层内流体的速度梯度减小,从而降低了壁面摩擦系数,故壁温升高能起到推迟边界层转捩与减阻的作用。  相似文献   

6.
A numerical and analytical solution of the problem of designing a two-element wing airfoil providing maximum lift-drag ratio in a subsonic viscous flow is presented. In order to bring the theoretical results closer to the facts, viscosity and compressibility are taken into account within the framework of boundary layer theory and the Chaplygin gas model, respectively.  相似文献   

7.
The purpose of this paper is to determine the shape of an oscillating body by minimising drag and lift forces, located in a transient incompressible viscous fluid flow by means of the Arbitrary Lagrangian Eulerian finite element method and an optimal control theory. A performance function is expressed by the drag and lift forces. The performance function should be minimised satisfying the state equation and the constant volume condition. Therefore, this problem can be transformed into a minimisation problem without constraint by the Lagrange multiplier method. The adjoint equation and the gradient of the performance function are used to update the shape of the body. In this study, as a minimisation technique, the weighted gradient method is applied. The final shape is obtained of which drag and lift forces are reduced by 66.2% and 92.8%, respectively. The final shape obtained by this study is compared with the final shape of the non-oscillating body. The obtained final shape of the oscillating body is significantly different from the non-oscillating body.  相似文献   

8.
在研究紊流边界层的过程中,本文考虑了分子粘性对紊流产生的作用、雷诺数以及壁面附近脉动动能的耗散不是各向同性对紊流产生的影响,采用Jones-Launder模型对管内紊流流动边界层厚度、边界层内的脉动动能K,动能耗散ε,管壁切应力τ0以及由此可得的管内流动摩擦阻力系数λ进行了数值计算,计算结果与实验值、理论计算值得具有较好的一致性。  相似文献   

9.
An effective numerical technique is presented to model turbulent motion of a standing surface wave in a tank. The equations of motion for turbulent boundary layers at the solid surfaces are coupled with the potential flow in the bulk of the fluid, and a mixed BEM–finite difference technique is used to model the wave motion and the corresponding boundary layer flow. A mixing‐length theory is used for turbulence modelling. The model results are in good agreement with previous physical and numerical experiments. Although the technique is presented for a standing surface wave, it can be easily applied to other free surface problems. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

10.
Numerical 3D simulations of turbulent, stratified two-phase shear flow with a surfactant laden interface were used to test and develop a phenomenological interfacial roughness scale model where the energy required to deform the interface (buoyancy, interfacial tension, and viscous work) is proportional to the turbulent kinetic energy adjacent to the interface.The turbulence was forced in the upper and lower liquids in the simulations, to emulate the interfacial dynamics without requiring (prohibitively) large simulation domains and Reynolds numbers. The addition of surfactant lead to an increased roughness scale (for the same turbulent kinetic energy) due to the introduction of interfacial dilatational elasticity that suppressed horizontal motion parallel to the interface, and enhanced the vertical motion.The phenomenological roughness scale model was not fully developed for dilatational elasticity in this work, but we proposed a source term that represents surfactant induced pressure fluctuations near the interface. This source term should be developed further to account for the relation between surfactant density fluctuations and turbulence adjacent to the interface. We foresee that the roughness scale model can be used as a basis for more general interfacial closure relations in Reynolds averaged turbulence models, where also mobile surfactant is accounted for.  相似文献   

11.
湍流和多相流是流体力学中最具挑战性的两个主题,湍流多相流的实验和数值模拟更是一项艰巨的挑战。此外,对颗粒干沉积方面的多相流、多尺度、多物理耦合特征的风沙流的综合实地观测仍然很少。因此,本文综合考虑湍流、多相流与多物理耦合等方面,采用以圆柱为干扰物产生对流涡流的强制干扰技术,以塔克拉玛干沙漠地带中和田至若羌铁路的过沙桥桥墩为研究背景。为摆脱有限元软件中由网格大变形或失真引起的各种问题,采用SPH方法的宏观界面追踪和微观单点追踪相结合的方式,初步揭示了以单相对流涡流为风场背景的含沙多相流环境下的圆柱周围复杂的流场变化以及对颗粒干沉积运动的影响。采用数值模拟与现场实验相结合的方式,着重对计算域边界壁面和圆柱壁面对空气单相流中对流涡流的成形运动及其特征分析、两相流中对流涡流在圆柱周围的夹沙运动模拟及其特性分析、两相流中对流涡流的夹沙率以及边界壁湍流对沙粒干沉积效率展开分析研究。  相似文献   

12.
《力学快报》2020,10(4):241-248
The presence of solid particles or water droplets in continuous fluid flow can either induce turbulence attenuation or amplification. The modification of the state of the turbulence depends on the characteristics of the particles, such as volume fraction, mean diameter, mass density, or carrier phase flow properties. In this brief review, the main physical concepts related to the most important physical aspects of turbulence modulation are summarized. Different criteria used to distinguish the enhancement or the attenuation effects of the particles on the carrier phase flows are recalled. For the interest of large-scale industrial applications, several theoretical,experimental and empirical approaches are discussed, which provides an interesting framework for the study of the effect of particles on turbulence behavior modification.  相似文献   

13.
An important way of increasing the speed and lowering the fuel consumption of ships is by decreasing the frictional drag. One of the most promising techniques for reducing drag is the use of air bubbles. The goal of this investigation is to establish a set of optimum robust parametric levels for drag reduction by a mixture (air–water) film in turbulent channel flow. Based on the conditions laid out by the Taguchi orthogonal array method, turbulent flows, with air bubbles injected into a channel, are simulated using commercial computational fluid dynamics software. The local shear stress on the upper wall is computed to evaluate the efficiency of drag reduction. Many factors can affect drag reduction. The factors investigated in this study are the rate of air injection, bubble size, area of air injection, flow speed, and measured position of the shear stress. These factors have been investigated through the analysis of variance, which has revealed that the rate of air injection and water flow speed dominate the efficiency of drag reduction by a mixture film. According to the results, the drag can be reduced by an average of 83.4%; and when the configuration of the parametric levels is optimum the maximum drag reduction of 88.5% is achieved. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

14.
风口区空气流动的有限元模拟与实验研究   总被引:1,自引:1,他引:0  
通风和空调出风口的射流特性主要取决于出风口截面之前的一段管道内的流动状况,研究送风口的射流偏转特性有重要实用价值.应用湍流大涡模拟技术结合Taylor-Galerkin有限单元法对工程中常见工况下的风口区管道内的三维流场进行了数值模拟和实验研究,数值计算结果与实验结果符合较好.表明湍流大涡模拟方法适合于边界形状复杂,存在各向异性的大尺度涡的内流情况,能可靠地预报风口区空气流动的射流偏转特性.  相似文献   

15.
热、机械载荷作用下夹杂对应力强度因子的影响   总被引:2,自引:0,他引:2  
推导了远场应力、热应力耦合作用下含夹杂裂纹体的应力强度因子求解公式,改进了体积力法中的裂纹面合力平衡条件,将应力强度因子的求解归结为解一组积分方程,再将积分方程转化为线性方程组进行数值求解。算例分析结果表明方法正确、有效。将该算法应用于含Al2O3夹杂的FGH95材料应力强度因子分析中,计算结果表明热应力对应力强度因子影响很小。  相似文献   

16.
A variant of the two-parameter turbulence model which makes it possible continuously to calculate a flow region with laminar, transition and turbulent regimes is proposed for investigating the flow under conditions of high freestream turbulence intensity. It is shown that the properties of the thermal transition can be theoretically described using the quasi-steady turbulence model in the case of periodic freestream velocity distribution. The numerical results are compared with theoretical and experimental data. The approach proposed is developed for determining the combined effect of the parameters of harmonic fluctuations of the external velocity and freestream turbulence on the heat transfer characteristics on a flat plate with different boundary conditions for the enthalpy.  相似文献   

17.
The existence of shock–turbulent boundary layer interactions lead to very complicated flow phenomena and pose a challenge for numerical simulation. In this paper, two turbulence models, the Baldwin–Lomax (B–L) model and the Johnson–King (J–K) model, which were originally developed for simple external flow simulation, are modified to model complex high-speed internal separated flows. The full Navier–Stokes solver used in this paper is based on a cell-centered finite volume method and multistepping time marching scheme. Both implicit residual smoothing and local time stepping techniques are incorporated to accelerate the convergence rate. To ensure the numerical stability with the present explicit scheme, a point-implicit treatment to the source term in the ordinary differential equation (ODE) of the J–K model has been developed and has proved to be very effective in modeling such a complex flow. An arc-bump channel flow case has been studied. Comparisons of computed results with experimental data show that the present solver, with the modified turbulence models, predicts the shock and the flow separation very well. The J–K model is found to predict the size of the separation bubble with a higher accuracy. © 1998 John Wiley & Sons, Ltd.  相似文献   

18.
The receptivity of the separated shear layer for Re = 300 flow past a cylinder is investigated by forced excitation via an unsteady inflow. In order to isolate the shear layer instability, a numerical experiment is set up that suppresses the primary wake instability. Computations are carried out for one half of the cylinder, in two dimensions. The flow past half a cylinder with steady inflow is found to be stable for Re = 300. However, an inlet flow with pulsatile perturbations, of amplitude 1% of the mean, results in the excitation of the shear layer mode. The frequency of the perturbation of the inlet flow determines the frequency associated with the shear layer vortices. For a certain range of forced frequencies the recirculation region undergoes a low‐frequency longitudinal contraction and expansion. An attempt is made to relate this instability to a global mode of the wake determined from a linear stability analysis. Interestingly, this phenomenon disappears when the outflow boundary of the computational domain is shifted sufficiently downstream. This study demonstrates the need of carefully investigating the effect of the location of outflow boundaries if the computational results indicate the presence of low‐frequency fluctuations. The effect of Re and amplitude of unsteadiness at the inlet are also presented. All computations have been carried out using a stabilized finite element formulation of the incompressible flow equations. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

19.
利用权函数法推导了围压和径向荷载共同作用下,考虑裂纹面摩擦的预制裂纹巴西盘应力强度因子计算公式,从理论上分析了围压、径向荷载和裂纹面摩擦对巴西盘应力强度因子的影响。结果表明,围压对I型应力强度因子有很大影响,I型应力强度因子随围压的增大而减小。当裂纹面闭合后围压和摩擦系数对II型应力强度因子同样具有显著影响,考虑裂纹面有效剪应力的权函数法理论解与有限元数值解相吻合,表明理论分析的正确性。  相似文献   

20.
An extensive investigation of the influence of the leakage flow through a labyrinth seal at supply pressure of 12 bar on the rotordynamics was performed by using numerical calculations and experimental measurements. Toward this end, an experimental rotor setup was established in Shanghai Jiao Tong University. Two labyrinth seals were chosen for comparison, e.g., an interlocking seal and a stepped one. The numerical calculations based on the bulk-flow theory and the perturbation analysis were accomplished. Simultaneous acquisitions of the fluctuating static pressure at the stator wall and the displacement of the whirling rotor were made. The influence of the aerodynamic forcing on the rotor was analyzed in terms of the axial distribution of the mean static pressure, the circumferential distribution of the fluctuating pressure, the fist critical speed and the destabilization rotating speed of the rotor. The experimental results demonstrated that the sinusoidal distribution of the fluctuating static pressure on the stator wall was closely related to the whirling motion of the rotor. The first critical speed of the rotor was reduced by the aerodynamic forcing, resulting in intensified destabilization of the rotor system. Furthermore, the numerical analyses were in good agreement to the experimental measurements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号