首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pure and Co-doped single-phase CeO2 crystals were synthesized by a solid-state reaction method. Samples of different oxygen vacancy concentration were studied, including (1) as-sintered crystals, (2) powders ground from the same crystal, and (3) a cold-pressed pellet from the ground powder that was unannealed and annealed at 800 °C. By analyzing the magnetic behaviors, surface/volume ratio and O vacancy concentration, the effects of oxygen vacancies on the room-temperature ferromagnetism (RT-FM) of Co-doped CeO2 were systematically investigated. The results confirm that the RT-FM observed in Co-doped CeO2 has a direct relationship with the oxygen vacancy concentration, and support the oxygen vacancy mediated FM mechanism.  相似文献   

2.
Thermal stability, oxygen non-stoichiometry and electrical conductivity of LaNi0.6Fe0.4O3δ were investigated in the temperature region of 20-1000 °C in Ar/O2 gas flows at oxygen partial pressures between 0.5 and 21,000 Pa. Diffusion mobility was measured in Ar/O2 gas flow at pO2 = 18 Pa. Crystal structure of this compound was found to be stable at the mentioned experimental conditions. LaNi0.6Fe0.4O3δ is a p-type semiconductor with metallic type conductivity above 150 °C at the investigated pO2 range. Two different (fast and slow) oxygen exchange areas on the temperature-pO2 diagram were established, which are due to two different oxygen anion positions in the double B-site mixed perovskite structure. Oxygen non-stoichiometry in the fast oxygen exchange region reaches about 0.005 of oxygen atomic index. Chemical diffusion and oxygen surface exchange coefficients do not vary at 600-800 °C, but show visible increase above 800-850 °C.  相似文献   

3.
The absorption by O2–CO2 mixtures in the region of the oxygen A-band near 760 nm has been measured in the laboratory at room temperature and for total pressures up to about 80 atm. As done in our previous studies for O2–N2 mixtures the contribution of the “allowed” A-band transitions have been calculated both accounting for line-mixing effects and disregarding this process. The differences between computed spectra and measured values enable extraction of the collision induced absorption (CIA) contribution, which, after removal of the O2–O2 contribution, provides, for the first time, the O2–CO2 CIA. It is shown that neglecting line-mixing overestimates absorption in the wings and underestimates absorption at the P and R branch peaks, and that the O2–CO2 CIA has an integrated intensity, in the A-band region, about 1.5 times larger than that of for pure O2 and almost 10 times greater than for O2–N2.  相似文献   

4.
The adsorption and dissociation of O2 on the perfect and oxygen-deficient Cu2O(1 1 1) surface have been systematically studied using periodic density functional calculations. Different kinds of possible modes of atomic O and molecular O2 adsorbed on the Cu2O(1 1 1) surface are identified: atomic O is found to prefer threefold 3Cu site on the perfect surface and Ovacancy site on the deficient surface, respectively. CuCUS is the most advantageous site with molecularly adsorbed O2 lying flatly over singly coordinate CuCUS-CuCSA bridge on the perfect surface. O2 adsorbed dissociatively on the deficient surface, which is the main dissociation pathway of O2, and a small quantity of molecularly adsorbed O2 has been obtained. Further, possible dissociation pathways of molecularly adsorbed O2 on the Cu2O(1 1 1) surface are explored, the reaction energies and relevant barriers show that a small quantity of molecularly adsorbed O2 dissociation into two O atoms on the deficient surface is favorable both thermodynamically and kinetically in comparison with the dissociation of O2 on the perfect surface. The calculated results suggest that the presence of oxygen vacancy exhibits a strong chemical reactivity towards the dissociation of O2 and can obviously improve the catalytic activity of Cu2O, which is in agreement with the experimental observation.  相似文献   

5.
The structures of LiTiPO5 and LiTi2(PO4)3, as well as the possibility of oxygen vacancies formation in the systems are studied by first-principles calculations. It is found that oxygen vacancies can be formed in LiTiPO5 and LiTi2(PO4)3 under oxygen poor condition. The formation of oxygen vacancies introduce a defect band within their band gaps, which is expected to improve the electronic conductivity of LiTiPO5 and LiTi2(PO4)3 significantly. Meanwhile, a great concentration of oxygen vacancies may increase the discharge voltage of LiTiPO5 and LiTi2(PO4)3.  相似文献   

6.
To use solar irradiation or interior lighting efficiently, we sought a photocatalyst with high reactivity under visible light. Nitrogen and carbon doping TiO2−xyNxCy films were obtained by heating the TiO2 gel in an ionized N2 gas and then were calcined at 500 °C. The TiO2−xyNxCy films have revealed an improvement over the TiO2 films under visible light (wavelength, 500 nm) in optical absorption and photocatalytic activity such as photodegradation of methyl orange. X-ray photoemission spectroscopy, infrared spectrum and UV-visible (UV-vis) spectroscopy were used to find the difference of two kinds of films. Nitrogen and carbon doped into substitutional sites of TiO2 has been proven to be indispensable for band-gap narrowing and photocatalytic activity.  相似文献   

7.
ZnAl2O4:Tb phosphor was prepared by combustion synthesis. ZnAl2O4:Tb exhibits three thermally stimulated luminescence (TSL) peaks around 150, 275 and 350 °C. ZnAl2O4:Tb exhibits optically stimulated luminescence (OSL) when stimulated with 470 nm light.Electron spin resonance (ESR) studies were carried out to identify defect centres responsible for TSL peaks observed in ZnAl2O4:Tb. Two defect centres are identified in irradiated ZnAl2O4:Tb phosphor and these centres are assigned to V and F+ centres. V centre appears to correlate with the 150 °C TSL peak, while F+ centre could not be associated with the observed TSL peaks.  相似文献   

8.
With the help of the Dexter's theory, the energy transfer mechanism from Pr3+1S0 to Cr3+ is investigated theoretically in SrAl12O19:Pr3+, Cr3+ quantum cutting phosphors. The electron spin resonance (ESR) spectra of Pr3+ and Cr3+-doped SrAl12O19 with magnetoplumbite structure have been studied. The Cr3+ ion is found to enter the Al4(4f) site, which is very close to the Sr(2d) site replaced by the Pr3+ ions in the host. The theoretical results indicate that the efficient Pr3+1S0→Cr3+ energy transfer can only take place in the intermediate mirror planes, in which for the nearest and next-nearest Pr3+-Cr3+ pairs, both dipole-dipole and dipole-quadrupole interactions can play their parts in the transfer. Finally, an overview is given about the research on the energy transfer from Pr3+1S0 to codopants in their co-doped materials.  相似文献   

9.
Orthorhombic YMnO3 thin films were epitaxially grown on bare and LaNiO3 buffered (0 0 1)-SrTiO3 substrates by pulsed laser deposition under various oxygen pressures from 5 to 30 Pa. The crystal structure and microstructure of these films have been characterized by both X-ray diffractions and transmission electron microscopy. The leakage current, modeled as the space charge limited current (SCLC) mechanism, decreased significantly with the increase of oxygen content. It is further found that the magnetic property of films is greatly enhanced in YMnO3 films grown under high oxygen pressure, which can be explained decreased oxygen vacancies. In addition, bipolar switching behavior was obtained only in the films grown under 30 Pa oxygen pressure, which is attributed to the decrease of voltage-driven oxygen vacancy migration.  相似文献   

10.
Intense red phosphors, AgGd1−xEux(W1−yMoy)2O8 (x=0.0-1.0, y=0.0-1.0), have been synthesized through traditional solid-state reaction and characterized by X-ray diffraction (XRD) and photoluminescence (PL). XRD results reveal that AgGd1−xEuxW2O8 synthesized at 1000 °C has a tetragonal crystal structure, which is named as high temperature phase (HTP) AgGdW2O8. All phosphors compositions with Eu3+ show red and green emission on excitation either in the charge-transfer or Eu3+ levels. Analysis of the emission spectra with different Eu3+ concentrations reveal that the optimum dopant concentration for Eu3+ is x=0.6 in the HTP AgGd1−xEuxW2O8 (x=0.0-1.0). Studies on the AgGd0.4Eu0.6(W1−yMoy)2O8 (y=0.0-1.0) and AgGd1−xEux(W0.7Mo0.3)2O8 (x=0.0-1.0) show that the emission intensity is maximum for compositions with y=0.3 and x=0.5, respectively, and a decrease in emission intensity is observed for higher y or x values. The Mo6+ and Eu3+ co-doped AgGd(WO4)2 phosphors show higher emission intensity in comparison with the singly Eu3+-doped AgGd(WO4)2 in UV region. The intense emission of the tungstate/molybdate phosphors under 394 and 465 nm excitations, respectively, suggests that these materials are promising candidates as red-emitting phosphors for near-UV/blue GaN-based white LED for white light generation.  相似文献   

11.
The oxygen flux through La1.9Sr0.1NiO4 + δ has been measured as a function of oxygen activity gradient and temperature (750–1000 °C). The oxygen nonstoichiometry was determined by thermogravimetry in the temperature range of 400–1000 °C and oxygen partial pressures of 0.0002–1 atm. The total conductivity was measured over a similar range of conditions. The oxide ion partial conductivity derived from the oxygen flux data is approximately 4 orders of magnitude lower than the total, mainly p-type electronic conductivity. The defect structure was derived based on the data. Combining the oxygen flux and oxygen nonstoichiometry, the self diffusion coefficient of oxygen interstitials was evaluated.  相似文献   

12.
杨昌平  李旻奕  宋学平  肖海波  徐玲芳 《物理学报》2012,61(19):197702-197702
本文研究了在真空、空气和氧气中烧结制备的三种 CaCu3Ti4O12陶瓷材料的介电特性. 交流阻抗测量结果表明在10—300 K温度范围, 三种样品的介电温谱中均出现三个平台, 其电阻实部和电容虚部在相应温度出现损耗峰, 真空条件烧结的样品具有较高的介电平台和较明显的电阻实部与电容虚部峰值, 表明氧含量和氧空位对CaCu3Ti4O12的介电性质具有重要影响, 介电温谱出现的三个平台分别源于晶粒、晶界及氧空位陷阱.温谱分析表明晶粒的激活能与烧结气氛有较大关系,氧空位引起的电子短程跳跃及跳跃产生的极化子是晶粒电导和电容的主要起源.氧空位陷阱的激活能基本与烧结气氛无关,约为0.46 eV. 氧空位对载流子的陷阱作用是CaCu3Ti4O12 低频高介电常数的重要起源.  相似文献   

13.
Well ordered V2O3(0 0 0 1) films were prepared on Au(1 1 1) and W(1 1 0) substrates. These films are terminated by a layer of vanadyl groups under typical UHV conditions. Reduction by electron bombardment may remove the oxygen atoms of the vanadyl layer, leading to a surface terminated by vanadium atoms. The interaction of oxygen with the reduced V2O3(0 0 0 1) surface has been studied in the temperature range from 80 to 610 K. Thermal desorption spectroscopy (TDS), infrared reflection absorption spectroscopy (IRAS), high resolution electron energy loss spectroscopy (HREELS), X-ray photoelectron spectroscopy (XPS), and density functional theory (DFT) were used to study the adsorbed oxygen species. Low temperature adsorption of oxygen on reduced V2O3(0 0 0 1) occurs both dissociatively and molecularly. At 90 K a negatively charged molecular oxygen species is observed. Upon annealing the adsorbed oxygen species dissociates, re-oxidizing the reduced surface by the formation of vanadyl species. Density functional theory was employed to calculate the structure and the vibrational frequencies of the O2 species on the surface. Using both cluster and periodic models, the surface species could be identified as η2-peroxo () lying flat on surface, bonded to the surface vanadium atoms. Although the O-O vibrational normal mode involves motions almost parallel to the surface, it can be detected by infrared spectroscopy because it is connected with a change of the dipole moment perpendicular to the surface.  相似文献   

14.
The objective of this study was to gain understanding of the preignition oxidation of Al powders in CO2. The thermal behavior and reaction energy was studied using simultaneous thermogravimetric analysis and differential scanning calorimetry (TG–DSC). The particle morphology was examined at different stages of the process using field emission gun scanning electron microscopy (FEG-SEM) and transmission electron microscopy (TEM). The corresponding chemical changes were analyzed by X-ray diffraction spectrometry (XRD) and energy dispersion X-ray spectrometry (EDS). Dimensional properties of Al particles have a significant influence on the oxidation processes. Distinctly different properties were shown between nm-Al and μm-Al, where the reactions are found to occur at different temperature ranges. The powder behavior is controlled by the oxide layer that coats each particle and prevents exposure of the metal core to the reactive CO2 gas. The properties of the oxide layer are related to the particle size. Carbon has been shown to play an important role in the reacting Al–CO2 system. A new mechanism of nano-Al particle oxidation in CO2 under gradually increasing temperature was proposed.  相似文献   

15.
The electron paramagnetic resonance parameters, zero-field splittings (ZFSs) b20, b40, b44, b60, b64 and the g factors for Gd3+ on the tetragonal Y3+ site in KY3F10 are theoretically studied from the superposition model for the ZFSs and the approximation formula for the g factor containing the admixture of the ground 8S7/2 and the excited 6L7/2 (L=P, D, F, G) states via the spin-orbit coupling interactions, respectively. By analysing the above ZFSs, the local structure information for the impurity Gd3+ is obtained, i.e., the impurity-ligand bonding angles related to the four-fold (C4) axis for the impurity Gd3+ center are found to be about 0.6° larger than those for the host Y3+ site in KY3F10. The calculated ZFSs based on the above angular distortion as well as the g factors are in reasonable agreement with the observed values. The present studies on the ZFSs and the local structure would be helpful to understand the optical and magnetic properties of this material with Gd dopants.   相似文献   

16.
The formation mechanism of CH3O by the adsorption and decomposition of CH3OH on clean and oxygen-precovered Cu2O(1 1 1) surface has been investigated with density functional theory method together with the periodic slab models. Two possible formation pathways of CH3O by CH3OH decomposition on oxygen-precovered (Opre) Cu2O(1 1 1) surface were proposed and discussed. One is the O-H bond-cleavage of CH3OH with H migration to Opre to form CH3O; the other is the C-O bond-scission of CH3OH with CH3 migration to Opre leading to CH3Opre. The calculated results show that the O-H bond-breaking path has the lowest activation barrier 26.8 kJ mol−1, the presence of oxygen-precovered on Cu2O(1 1 1) surface exhibits a high surface reactivity toward the formation of CH3O by the O-H bond-cleavage of CH3OH, and reduce the activation barrier of O-H bond-cleavage. The C-O bond-breaking path was inhibited by dynamics, suggesting that the O atom of CH3O is not from the oxygen-precovered, but comes from the O of CH3OH. Meanwhile, the calculated results give a clear illustration about the formation mechanism of CH3O in the presence of oxygen and the role of oxygen at the microscopic level.  相似文献   

17.
KGd1−x(WO4)2−y(MoO4)y:Eu3+x(0.1?x?0.75, y=0 and 0.2) phosphors are synthesized through traditional solid-state reaction and their luminescent properties in ultraviolet (UV) and vacuum ultraviolet (VUV) regions are investigated. Under 147 nm excitation, these phosphors show characteristic red emission with good color purity. In order to improve their emission intensity, the MoO42− (20 wt%) is introduced into the anion of KGd1−x(WO4):Eu3+x. The Mo6+ and Eu3+ co-doped KGd(WO4)2 phosphors show higher emission intensity in comparison with the singly Eu3+-doped KGd(WO4)2 in VUV region. The chromaticity coordination of KGd0.45(WO4):Eu3+0.55 is (x=0.669, y=0.331), while that of KGd0.45(WO4)1.8(MoO4)0.2:Eu3+0.55 is (x=0.666, y=0.334) in VUV region.  相似文献   

18.
Using first-principles calculation, the effect of lattice strain on the oxygen vacancy formation at CeO2(111) surface has been investigated. The tensile strain facilitates the oxygen vacancy formation at the surface and the compressive strain hinders the process. This is in part due to the strengthening or weakening of the surface Ce–O bond under the lattice strain. On the other hand, a more open surface with a larger lattice constant can better accommodate the larger Ce3+ and thus facilitate the structural relaxation of the reduced surface. The studies on the strain effect on the atomic hydrogen adsorption at the defect-free CeO2(111) surface show that the adsorption strength monotonously increases with the increase of the lattice strain, further confirming the tunable surface chemical activity by lattice strain.  相似文献   

19.
S. Funk 《Applied Surface Science》2007,253(17):7108-7114
We attempt to correlate qualitatively the surface structure with the chemical activity for a metal surface, Cr(1 1 0), and one of its surface oxides, Cr2O3(0 0 0 1)/Cr(1 1 0). The kinetics and dynamics of CO2 adsorption have been studied by low energy electron diffraction (LEED), Aug er electron spectroscopy (AES), and thermal desorption spectroscopy (TDS), as well as adsorption probability measurements conducted for impact energies of Ei = 0.1-1.1 eV and adsorption temperatures of Ts = 92-135 K. The Cr(1 1 0) surface is characterized by a square shaped LEED pattern, contamination free Cr AES, and a single dominant TDS peak (binding energy Ed = 33.3 kJ/mol, first order pre-exponential 1 × 1013 s−1). The oxide exhibits a hexagonal shaped LEED pattern, Cr AES with an additional O-line, and two TDS peaks (Ed = 39.5 and 30.5 kJ/mol). The initial adsorption probability, S0, is independent of Ts for both systems and decreases exponentially from 0.69 to 0.22 for Cr(1 1 0) with increasing Ei, with S0 smaller by ∼0.15 for the surface oxide. The coverage dependence of the adsorption probability, S(Θ), at low Ei is approx. independent of coverage (Kisliuk-shape) and increases initially at large Ei with coverage (adsorbate-assisted adsorption). CO2 physisorbs on both systems and the adsorption is non-activated and precursor mediated. Monte Carlo simulations (MCS) have been used to parameterize the beam scattering data. The coverage dependence of Ed has been obtained by means of a Redhead analysis of the TDS curves.  相似文献   

20.
Gd1−xCaxBaSrCu3O7−δ samples (0  x  0.1) were prepared via solid-state reaction. Four-point probes method was used for resistance versus temperature measurements. Results show decrease in Tc by increasing x content. This variation is assumed to be irrelevant to the different phases or impurity effects since X-ray patterns show all samples are tetragonal single-phase. Ca doping decreases the oxygen content and lattice parameters of the samples. It is suggested that Ca prevents the dislocation of oxygen, and then disrupts the hole concentration of the system and antiferromagnetic correlation at CuO2 planes. Subsequently, destroys the superconductivity of the samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号