首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 93 毫秒
1.
We demonstrate a high-efficiency and high-power quasi-three-level laser based on a trapezoidal composite slab architecture with a 270 μm-thick Yb-doping surface. The design of a surface-doped slab architecture,temperature effects, laser oscillator model, and laser oscillator experiments with a surface-doped slab as a laser host medium have been presented. By theoretical calculation, the temperature rise in the surface-doped slab is only one seventh of that in the bulk-doped slab at the same maximum pump power of 30 kW. Finally, in the laser oscillator experiments, an output energy of 21.6 J is obtained when the pump energy is 48 J with a repetition rate of 5 Hz and a pulse width of 1 ms. The optical-optical efficiency is 45%.  相似文献   

2.
The electron phonon relaxation time as functions of pulse width and fluence of femtosecond laser is studied based on the two-temperature model. The two-temperature model is solved using a finite difference method for copper target. The temperature distribution of the electron and the lattice along with space and time for a certain laser fluence is presented. The time-dependence of lattice and electron temperature of the surface for different pulse width and different laser fluence are also performed, respectively. Moreover, the variation of heat-affected zone per pulse with laser Auence is obtained. The satisfactory agreement between our numerical results and experimental data indicates that the electron-phonon relaxation time is reasonably accurate with the influences of pulse width and Auence of femtosecond laser.  相似文献   

3.
A three-rod series resonator cw Nd:YAG laser suitable for the industrial applications is presented. The symmetrical resonator laser has been developed and is rated at 1820-W output power with beam parameter product 24 mm.mrad. By utilizing the symmetrical resonator design, the characteristic of beam with multi-rod is not obviously decreased compared with that of a single one. The system total electro-optics efficiency of lamp pumped YAG crystal is as high as 4.0%. The main factors, which affect output power and beam quality of high power solid-state laser module, are theoretically analysed.  相似文献   

4.
A large-aperture Nd:YAG thin-disk laser directly cooled by liquid is end-pumped by two spatial selforganized laser diode arrays. The pump coupling efficiency reaches as high as 93%. Without any complex pump coupling components, the structure becomes simplified and compact. By optimizing the incident angle of the pump beam, a pump power density of 578 W/cm2 is achieved with a pump uniformity of 5.52%. Up to 1 346-W peak output power with a slope efficiency of 54.9% is obtained when pumping with a long pulse. The near-field pattern of the laser output is uniform.  相似文献   

5.
A Continuous-Wave Diode-Side-Pumped Tm:YAG Laser with Output 51W   总被引:1,自引:0,他引:1       下载免费PDF全文
A compact diode-side-pumped Tm:YAG laser is presented, which can output 51 W of cw power at 2.02 μm. The Tm:YAG rod is side pumped by nine diode arrays with the central wavelength of 783nm and the with bandwidth of about 2.5 nm at 25^o C. To decrease the thermal effect on the both ends and dissipate the heat effectively, one composite Tm:YAG rod with the undoped YAG end caps and the screw threads on the side surface of the rod is used as the laser crystal. The maximum optical-to-optical conversion efficiency of the 2.02-μm laser output is 14.2%, with a slope effciency of 26.8%  相似文献   

6.
A passively Q-switched side-pumped laser with folded resonator is specially constructed for single- longitudinal-mode smooth pulse output. Nd:YAG is chosen as the laser active medium and Cr^4+:YAG as the saturable absorber medium. Additionally, the method of frequency selection by grating with 1200 line/mm and Fabry-Perot (F-P) etalon is used in the twisted-mode cavity. The single-frequency smooth pulses are produced with 10-Hz repetition rate, 20-ns pulse width, and 1.064-μm wavelength. The proba- bility of single-frequency laser output measured is over 99% by using the methods of Fourier analysis and F-P etalon multiple-beam interferometry at the threshold voltage. The measured near-field and far-field angles of divergence are 1.442 and 1.315 mrad, respectively. The values of M^2 are 1.32 and 1.31 separately with the knife-edge method. Single pulse at 1.064 tim with the energy of 8.8 mJ is achieved in TEM00 mode.  相似文献   

7.
We report a cesium vapor laser with fundamental mode output and a wavelength of 894 nm. The laser is pumped by a laser diode array with an external cavity of a holographic grating by using Littrow's structure. A slope efbciency of 22.4% is obtained by using a pumping source with a linewidth of 0.26 nm and 80 kPa methane as the buffer gas. The threshold pumping power is 1.56 W.  相似文献   

8.
We demonstrate a linearly-polarized, ytterbium-doped fiber laser that uses an uncoated, undoped ceramic YAG plate as the output coupler, and the corresponding polarization extinction ratio of laser beam increases with incident pump power and then saturates at larger pump power. For comparison, the output coupler of the fiber laser is replaced by 10% reflectivity plane mirror, while the feature of the polarization of laser output is kept unchanged. The results show that the origin of the pump-dependent and self-started polarization is associated with the intensity-dependent nonlinear birefringence in the gain fiber.  相似文献   

9.
A flashlamp-pumped Cr:LiSAF laser system with a voltage controlled Q-switch structure in the cavity is designed. A dual-wavelength and dual-pulse tunable laser output is gained. The relation of laser output behavior with input energy is studied experimentally. The output is dual-pulsed with the energy of the 32m J/pulse producing the total output energy of 64mJ and the pulse width is about 27ns at 850nm. Then, we use one LBO crystal as the frequency doubling crystal to obtain a dual wavelength (448.1 nm and 449.15nm) and dual pulse laser. The output for one wavelength is about 10.3mJ and the line width is less than 0.02nm.  相似文献   

10.
We present a near diffraction-limited 1 064-nm Nd:YAG rod laser with output power of 82.3 W(M~2≈1.38). The power fluctuation over two hours is better than±1.1%.Pulsed 1064-nm laser with an average power of 66.6 W and pulse width of 46 ns are achieved when the laser is Q-switched at a repetition rate of 10 kHz.The short pulse duration stems from the short cavity as well as the high-gain laser modules. Using intracavity-frequency-doubling,a 35.0-W near diffraction-limited 532-nm green laser(M~2≈1.32) is achieved with a pulse width of 43 ns.  相似文献   

11.
Lasers from a Tm:YAG slab is end-pumped by continuous-wave output of the Tm:YAG ceramic ceramic am~e reported for the t~rst time to our best knowledge. The Tm:YAG ceramic a laser diode with central wavelength 792nm. At room temperature, the maximum power is 4.5 W, and the sloping efficiency is obtained to be 20.5%. The laser spectrum is centered at 2015nm.  相似文献   

12.
We demonstrate a 1064nm Nd:YAG laser by directly pumping into the upper lasing level with a tunable Ti:sapphire laser. The valid wavelength is demonstrated at 868.3nm, 875.2nm, 883.8nm, and 885.5nm, respectively. To our knowledge, this is the first time that 1064nm Nd:YAG laser pumped by 875.2nm laser. In addition, laser wavelength at 946 nm is also generated by direct pumping together with traditional pumping.  相似文献   

13.
We report a high-effciency Nd:YAG laser operating at 1064 nm and 1319nm, respectively, thermally boosted pumped by an all-solid-state Q-switched Ti:sapphire laser at 885 nm. The maximum outputs of 825.4 m W and 459.4mW, at 1064nm and 1319nm respectively, are obtained in a 8-ram-thick 1.1 at.% Nd:YAG crystal with 2.1 W of incident pump power at 885nm, leading to a high slope efficiency with respect to the absorbed pump power of 68.5% and 42.0%. Comparative results obtained by the traditional pumping at 808nm are presented, showing that the slope efficiency and the threshold with respect to the absorbed pump power at 1064nm under the 885nm pumping are 12.2% higher and 7.3% lower than those of 808rim pumping. At 1319nm, the slope efficiency and the threshold with respect to the absorbed pump power under 885nm pumping are 9.9% higher and 3.5% lower than those of 808 nm pumping. The heat generation operating at 1064 nm and 1319 nm is reduced by 19.8% and 11.1%, respectively.  相似文献   

14.
We demonstrate a high-efficiency continuous-wave Tm: YAG ceramic laser pumped with a Ti:sapphire laser. An output power up to 860mW is obtained under an absorbed pump power of 2.21 W at 785nm, corresponding to a slope efficiency of 42.1% and optical to optical efficiency of 22%. The measured central wavelength is 2012nm.  相似文献   

15.
We report a compact, conduction-cooled, highly efficient, continuous wave (CW) Nd:YAG slab laser in diode-side-pumped geometry. To achieve high efficiency, a novel laser head for Nd:YAG slab has been developed. For an absorbed pump power of 27.6 W, maximum output power of 10.4 W in multimode and 8.2 W in near-diffraction-limited beam quality has been obtained. Slope and optical-to-optical conversion efficiencies are 45.3% and 37.7% in multimode with beam quality factors (M2) in x and y directions equal to 32 and 8, respectively. TEM00 mode operation was achieved in a hybrid resonator with slope and optical-to-optical conversion efficiencies of 43.2% and 29.7%, respectively. Beam quality factors in x and y directions are ?1.5 and ?1.6 for the whole output power range. The laser radiation was linearly polarized and polarization contrast ratios are >1200:1 in the multimode and 1800:1 in the TEM00 mode operation. In passive Q-switching with Cr4+:YAG crystal of 68% initial transmission, 18 ns pulsewidth has been achieved with an average power of 2 W at a repetition rate of 16 kHz.  相似文献   

16.
We report on a diode-laser-pumped cw Nd: YAG laser operating at a power level of 150 W. By using a transverse pump geometry, the radiation of 54 diode lasers with an output power of 10 W each is coupled into a Nd:YAG rod. In multimode operation, an optical slope efficiency of 32% and an optical to optical efficiency of 29% are obtained. In TEM00 operation, an output power of more than 30 W is realized with an optical to optical efficiency of 10%.  相似文献   

17.
Influence of spatial mode matching in end-pumped solid state lasers   总被引:1,自引:0,他引:1  
We present investigations on the influence of mode matching on the efficiency of longitudinally pumped solid state lasers. In a theoretical part we enhance an existing model for four level lasers from idealized cylindrical modes to arbitary pump and laser modes in a random relative position thereby neglecting beam deformation due to thermal effects. The theoretical predictions were confirmed experimentally with an end-pumped Nd:YAG rod operated at 1064 nm. To investigate the effect of misalignment on the efficiency we used a Ti-Sapphire pump laser which was displaced relative to the laser beam. To establish the influence of arbitary pump modes on laser performance a diode laser equipped with coupling optics served as pump source for the same resonator. The resulting decrease in slope efficiency compared to the Ti-Sapphire pumped system could be explained in terms of limited mode overlap due to the characteristic pump field distribution produced by the diode coupling optics.  相似文献   

18.
Generation of powerful 1-ps pulses at two independently and continuously tunable wavelengths with precisely controllable delays between them is obtained in a compact dye laser device using a single standard nanosecond Nd:YAG pump laser.  相似文献   

19.
A compact high power diode-side-pumped Nd:GdVO4 laser has been presented, which can generate an output power of 52 W at 1.063-μm for continuous-wave (CW) operation. The absorption characteristics of the Nd:GdVO4 in different pump directions is measured, which were used to optimize the diode-side-pumped Nd:GdVO4 laser head. The laser characteristics of both CW and Q-switched Nd:GdVO4 and Nd:YAG in are compared and it was found that Nd:GdVO4 may surpass Nd:YAG for high power laser application.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号