首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We present a theoretical study of the hydrogen abstraction reactions from CH(3)F and CH(2)F(2) by an ozone molecule. The geometries and harmonic vibrational frequencies of all stationary points are calculated at the MPW1K, BHandHLYP, and MPWB1K levels of theory. The energies of all of the stationary points were refined by using both higher-level (denoted as HL) energy calculations and QCISD(T)/6-311++G(2df,2pd) calculations based on the optimized geometries at the MPW1K/6-31+G(d,p) level of theory. The minimum energy paths (MEPs) were obtained by the MPW1K/6-31+G(d,p) level of theory. Energetic information of the points along the MEPs is further refined by the HL method. The rate constants were evaluated on the basis of the MEPs from the HL level of theory in the temperature range 200-2500 K by using the conventional transition-state theory (TST), the canonical variational transition-state theory (CVT), the microcanonical variational transition-state theory (microVT), the CVT coupled with the small-curvature tunneling (SCT) correction (CVT/SCT), and the microVT coupled with the Eckart tunneling correction (microVT/Eckart) based on the ab initio calculations. A general agreement was found among the TST, CVT, and microVT theories. The fitted three-parameter Arrhenius expressions of the calculated forward CVT/SCT and microVT/Eckart rate constants of the ozonolysis of fluoromethane are k(CVT/SCT)(T) = 2.76 x 10(-34)T(5.81)e((-13975/)(T)) and k(microVT/Eckart)(T) = 1.15 x 10(-34)T(5.97)e((-14530.7/)(T)), respectively. The fitted three-parameter Arrhenius expressions of the calculated forward CVT/SCT and microVT/Eckart rate constants of the ozonolysis of difluoromethane are k(CVT/SCT)(T) = 2.29 x 10(-36)T(6.42)e((-15451.6/)(T)) and k(microVT/Eckart)(T) = 1.31 x 10(-36)T(6.45)e((-15465.8/)(T)), respectively.  相似文献   

2.
用从头算方法获得了H2+CN反应的内禀反应坐标(IRC),沿着IRC,计算了各垂直于IRC的简正模所对应的频率(W)以及沿IRC运动与垂直IRC运动的简正模之间的耦合常数(BKF),根据传统过渡态,变分过渡态理论和选态公式,计算了nCN=0及nCN=1时反应的速率常数,并得到了实验相一致的结果,还计算了nCH=1及nCN=1的H+HCN→H2+CN反应速率常数,可供实验工作者参考。  相似文献   

3.
We present a new parametrization (based on ab initio calculations) of the bending potentials for the two lowest potential energy surfaces of the reaction O(3P) + H2, and we use it for rate constant calculations by variational transition-state theory with multidimensional semiclassical tunneling corrections. We present results for the temperature range 250–2400 K for both the rate constants and the intermolecular kinetic isotope effects for the reactions of O(3P) with D2 and HD. In general, the calculated rate constants for the thermal reactions are in excellent agreement with available experiments. We also calculate the enhancement effect for exciting H2 to the first excited vibrational state. The calculations also provide information on which aspects of the potential energy surfaces are important for determining the predicted rate constants.  相似文献   

4.
The rate constants of the reactions of HOI molecules with H, OH, O ((3)P), and I ((2)P(3/2)) atoms have been estimated over the temperature range 300-2500 K using four different levels of theory. Geometry optimizations and vibrational frequency calculations are performed using MP2 methods combined with two basis sets (cc-pVTZ and 6-311G(d,p)). Single-point energy calculations are performed with the highly correlated ab initio coupled cluster method in the space of single, double, and triple (pertubatively) electron excitations CCSD(T) using the cc-pVTZ, cc-pVQZ, 6-311+G(3df,2p), and 6-311++G(3df,3pd) basis sets. Reaction enthalpies at 0 K were calculated at the CCSD(T)/cc-pVnZ//MP2/cc-pVTZ (n = T and Q), CCSD(T)/6-311+G(3df,2p)//MP2/6-311G(d,p), and CCSD(T)/6-311++G(3df,3pd)//MP2/6-311G(d,p) levels of theory and compared to the experimental values taken from the literature. Canonical transition-state theory with an Eckart tunneling correction is used to predict the rate constants as a function of temperature. The computational procedure has been used to predict rate constants for H-abstraction elementary reactions because there are actually no literature data to which the calculated rate constants can be directly compared. The final objective is to implement kinetics of gaseous reactions in the ASTEC (accident source term evaluation code) program to improve speciation of fission products, which can be transported along the reactor coolant system (RCS) of a pressurized water reactor (PWR) in the case of a severe accident.  相似文献   

5.
We present a direct ab initio and hybrid density functional theory dynamics study of the thermal rate constants of the unimolecular decomposition reaction of C2H5O-->CH2O + CH3 at a high-pressure limit. MPW1K/6-31+G(d,p), MP2/6-31+G(d,p), and MP2(full)/6-31G(d) methods were employed to optimize the geometries of all stationary points and to calculate the minimum energy path (MEP). The energies of all the stationary points were refined at a series of multicoefficient and multilevel methods. Among all methods, the QCISD(T)/aug-cc-pVTZ energies are in good agreement with the available experimental data. The rate constants were evaluated based on the energetics from the QCISD(T)/aug-cc-pVTZ//MPW1K/6-31+G(d,p) level of theory using both microcanonical variational transition state theory (microVT) and RRKM theory with the Eckart tunneling correction in the temperature range of 300-2500 K. The calculated rate constants at the QCISD(T)/aug-cc-pVTZ/MPW1K/6-31+G(d,p) level of theory are in good consistent with experimental data. The fitted three-parameter Arrhenius expression from the microVT/Eckart rate constants in the temperature range 200-2500 K is k = 2.52 x 10(12)T(0.41)e(-8894.0/T) s(-1). The falloff curves of pressure-dependent rate constants are performed using master-equation method within the temperature range of 391-471 K. The calculated results are in good agreement with the available experimental data.  相似文献   

6.
李宗和  吴立明  刘若庄 《化学学报》1997,55(11):1061-1065
本文用从头计算法(UMP2/6-31G)对氟与二氟乙烷的与1位、2位碳相连的氢的抽提氢反应进行研究。CHF2CH3+F→CF2CH3+HF(R1), CHF2CH3+F→CHF2CH2+HF(R2)。在内禀反应坐标(IRC)的势能剖面基础上用传统过渡态、变分过渡态理论计算了上述两个反应的速率常数及比值, 获得了与实验相一致的结果。  相似文献   

7.
用从头算方法, 获得了H2O + Cl→HCl + OH(R1), HOD +Cl→DCl + OH(R2), HOD + Cl→HCl + OD(R3)反应的内禀反应坐标(IRC)。根据传统过渡态、变分过渡态理论及相应的隧道效应校正, 计算了反应的速率常数。对已有实验速率常数值的R1反应, 我们计算的结果和实验一致。根据Truhlar的振动选态公式, 分别讨论了激发HOD中OH, OD振动模式对反应速率的影响,得到激发HOD中的OH振动模式将有利于产物OD + HCl生成, 和实验的结论相一致。  相似文献   

8.
The reaction mechanism of CF(3)CH(2)OH with OH is investigated theoretically and the rate constants are calculated by direct dynamics method. The potential energy surface (PES) information, which is necessary for dynamics calculation, is obtained at the B3LYP/6-311G (d, p) level. The single-point energy calculations are performed at the MC-QCISD level using the B3LYP geometries. Complexes, with the energies being less than corresponding reactants and products, are found at the entrance and exit channels for methylene-H-abstraction channel, while for the hydroxyl-H-abstraction channel only entrance complex is located. By means of isodesmic reactions, the enthalpies of the formation for the species CF(3)CH(2)OH, CF(3)CHOH, and CF(3)CH(2)O are estimated at the MC-QCISD//B3LYP/6-311G (d, p) level of theory. The rate constants for two kinds of H-abstraction channels are evaluated by canonical variational transition state theory with the small-curvature tunneling correction (CVT/SCT) over a wide range of temperature 200-2000 K. The calculated results are in good agreement with the experimental values in the temperature region 250-430 K. The present results indicate that the two channels are competitive. Below 289 K, hydroxyl-H-abstraction channel has more contribution to the total rate constants than methylene-H-abstraction channel, while above 289 K, methylene-H-abstraction channel becomes more important and then becomes the major reaction channel.  相似文献   

9.
次甲基作为化学反应源曾引起广泛的兴趣.Schaefer 及其合作者于1977年对反应CH(~4Σ~-)+H_2→CH_2(~3B_1)+H 进行过量子化学研究,但是计算中限制了一些自由度.近年来,由于能量梯度方法的发展,反应途径哈密顿理论和变分过渡态理论的提出,有可能进一步对该反应进行分子反应动力学性质的研究.本文用从头算UHF/6-31G 方法和能量梯度方法首先优化出上述反应(原子编号为CH_a+H_bH_c→H_bCH_a+H_c)的过渡态;再用  相似文献   

10.
萘在1-1价小离子盐水溶液中活度系数的研究(V)   总被引:1,自引:0,他引:1  
本文用紫外分光光度法测定了25 ℃下萘在LiBr、NaBr,KBr、NH_4Cl、NaF及KF盐水溶液中的活度系数f。将萘的lgf分别对六种盐的浓度c_S作图, 得到通过原点的直线, 符合Setschenow盐析公式, 直线斜率就是盐析常数k。本文还计算了萘在盐水溶液中盐析常数的各种理论值, 并对各种理论值进行对比, Debye-MacAulay理论和McDevit-Long公式的计算值都较实验值大2—3倍。Conway等人理论的计算k值对不同盐差别很小, 而实验值彼此之间的差别却很大。对体积大的非电解质, 色散力对盐析常数的影响不可忽略。本文对Bockris公式进行修正, 计算结果表明, 它能较正确地指出盐效应的次序及盐析常数的符号。内压力理论改进公式的计算结果不仅能预言盐析常数的符号, 也能指出盐析常数大小的顺序, 理论值与实经值符合较好。  相似文献   

11.
The far-from-resonance transfers and the de-excitation processes in CO2-NO and N2O-NO systems have been studied by measuring fluorescence decay rate constants of CO2 or N2O excited to the (00°1) level by laser radiation. The diagrams giving the variations of these rate constants versus the molar fraction of CO2 or N2O have been set out. From these diagrams, the relative importance of the V-V transfer and V-T de-excitation rate constants is discussed. The transfer rate constants have been calculated from a semiclassical theory in which the interaction potential is a sum of four atom-atom Morse potentials. The disagreement observed between calculated and experimental values probably results from the attractive multipolar forces which the theory does not take into account.  相似文献   

12.
Canonical instanton theory is known to overestimate the rate constant close to a system‐dependent crossover temperature and is inapplicable above that temperature. We compare the accuracy of the reaction rate constants calculated using recent semi‐classical rate expressions to those from canonical instanton theory. We show that rate constants calculated purely from solving the stability matrix for the action in degrees of freedom orthogonal to the instanton path is not applicable at arbitrarily low temperatures and use two methods to overcome this. Furthermore, as a by‐product of the developed methods, we derive a simple correction to canonical instanton theory that can alleviate this known overestimation of rate constants close to the crossover temperature. The combined methods accurately reproduce the rate constants of the canonical theory along the whole temperature range without the spurious overestimation near the crossover temperature. We calculate and compare rate constants on three different reactions: H in the Müller–Brown potential, methylhydroxycarbene → acetaldehyde and H2 + OH → H + H2O. © 2017 Wiley Periodicals, Inc.  相似文献   

13.
The multiple channel reaction H + CH(3)CH(2)Cl --> products has been studied by the ab initio direct dynamics method. The potential energy surface information is calculated at the MP2/6-311G(d,p) level of theory. The energies along the minimum energy path are further improved by single-point energy calculations at the PMP4(SDTQ)/6-311+G(3df,2p) level of theory. For the reaction, four reaction channels (one chlorine abstraction, one alpha-hydrogen abstraction, and two beta-hydrogen abstractions) have been identified. The rate constants for each reaction channel are calculated by using canonical variational transition state theory incorporating the small-curvature tunneling correction in the temperature range 298-5000 K. The total rate constants, which are calculated from the sum of the individual rate constants, are in good agreement with the experimental data. The calculated temperature dependence of the branching fractions indicates that for the title reaction, H-abstraction reaction is the major reaction channel in the whole temperature range 298-5000 K.  相似文献   

14.
用量子化学方法, 从理论上探讨了CHnF4-n(n=2,3)与臭氧反应的微观机理, 并计算了各反应在不同温度下的速率常数.  相似文献   

15.
This paper presents an application of the reaction class transition state theory (RC-TST) to predict thermal rate constants for hydrogen abstraction reactions of the type OH + alkane --> HOH + alkyl. We have derived all parameters for the RC-TST method for this reaction class from rate constants of 19 representative reactions, coupling with linear energy relationships (LERs), so that rate constants for any reaction in this class can be predicted from its reaction energy calculated at either the AM1 semiempirical or BH&HLYP/cc-pVDZ level of theory. The RC-TST/LER thermal rate constants for selected reactions are in good agreement with those available in the literature. Detailed analyses of the results show that the RC-TST/LER method is an efficient method for accurately estimating rate constants for a large number of reactions in this class. Analysis of the LERs leads to the discovery of the beta-carbon radical stabilization effect that stabilizes the transition state of any reaction in this class that yields products having one or more beta-carbons, and thus leads to the lower barrier for such a reaction.  相似文献   

16.
将选态速度常数的计算推广到任意指定反应物、过渡态的振动激发态.用此法计算了H+H_2(v)及其同位素经不同振动激发过渡态时的速度常数,发现弯曲振动模激发所得结果与实验值更符合,并且在给定能量下,过渡态的弯曲振动模激发比其对称伸缩模激发更有利于反应进行.  相似文献   

17.
The direct hydrogen abstraction reactions of Cl atom with SiH(n)Cl(4-n) (n=1,2,3,4) have been studied systematically using ab initio molecular orbital theory. Geometries have been optimized at the MP2 level with 6-311+G(d) basis set, QCISD(T)/6-311+G(d,p) has been used in the final single point energy calculation. The kinetic calculations of these reactions have been explored using the canonical variational transition (CVT) state theory method with small-curvature tunneling (SCT) effect correction over the temperature range of 200-2000 K. The CVT/SCT rate constants exhibit typical non-Arrhenius behavior and three-parameter rate-temperature formulas have been fitted for the reactions of Cl with SiH4, SiH3Cl, SiH2Cl2, and SiHCl3, respectively (in unit of cm(3) molecule(-1) s(-1)). The calculated CVT/SCT rate constants are in agreement with the available experimental values.  相似文献   

18.
A general and practical procedure is described for calculating rate constants for chemical reactions using a minimal number of ab initio calculations and quantum-dynamical computations. The method exploits a smooth interpolating functional developed in the hyperspherical representation. This functional is built from two Morse functions and depends on a relatively small number of parameters with respect to conventional functionals developed to date. Thus only a small number of ab initio points needs to be computed. The method is applied to the H + CH4 --> H2 + CH3 reaction. The quantum scattering calculations are performed treating explicitly the bonds being broken and formed. All the degrees of freedom except the breaking and forming bonds are optimized ab initio and harmonic vibrational frequencies and zero-point energies for them are calculated at the MP2(full) level with a cc-pVTZ basis set. Single point energies are calculated at a higher level of theory with the same basis set, namely CCSD(T, full). We report state-to-state cross sections and thermal rate constants for the title reaction and make comparisons with previous results. The calculated rate constants are in good agreement with experiments.  相似文献   

19.
The hydrogen abstraction reaction of O(^3P) with Si2H6 has been studied theoretially. Two transition states of ^3A″ and ^3A′ symmetries have been located for this abstraction reaction. Geometries have been optimized at the UMP2 leve with 6-311G (d) basis set. G3MP2 has been used for the final single-point energy calculation. The rate constants have been calculated over a wide temperature range of 200-3000K using canonical variational transition-state sheory (CVT) with small curvature tunneling effect(SCT). The calculated CVT/SCT rate constants match well with the experimental value.  相似文献   

20.
Rate constants of the prototypical methyl-methyl radical association reaction are calculated on the basis of variational transition-state theory with a variable reaction coordinate and a multifaceted dividing surface. The potential energies required in the Monte Carlo integrations are evaluated directly using the M06 and M06-L density functionals. The rate constants are calculated at the canonical, microcanonical, and E,J-resolved microcanonical levels. The best prediction of rate constants is based on the potential energies calculated by the M06-L density functional; these agree with experimental data quantitatively from 300 to 1000 K. This study shows that density functional theory can be accurate enough for calculating rate constants of reactions with loose transition states, whereas previously only multireference wave function methods, which are more complicated and more expensive, had been demonstrated to be sufficiently accurate. The application of density functional theory for the loose transition states will allow larger and complicated systems to be studied efficiently.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号