首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The room-temperature fluorescence spectrum of the non-alternating polynucleotide polydA.polydT is found to have its maximum at about 325 nm and, when exciting in the spectral region where both adenine (A) and thymine (T) absorb, to coincide with that obtained for excitation at 293 nm where thymine is selectively excited. The fluorescence anisotropy is found to be equal to 0.18 and independent of the excitation and emission wavelengths. These observations are consistent with: (i) emission stemming from T; and (ii) transfer of electronic energy from A to T being not efficient. These inferences are also supported by the observed dependence of the fluorescence quantum yield on the excitation wavelength.  相似文献   

2.
We report the steady-state fluorescence properties of the alternating polynucleotide poly(dG-dC).poly(dG-dC) in low-salt solution at room temperature for excitation at the Hg lines 265, 280 and 297 nm. Its fluorescence spectrum peaks at about 325 nm and, within the experimental error, its shape does not change significantly with the excitation wavelength. The fluorescence anisotropy is found to decrease strongly for short-wavelength excitation, a behavior which is very similar to that exhibited by free guanine. In view of the fact that the anisotropy for free cytosine is virtually constant at the aforementioned three excitation wavelengths, the results suggest that in this polynucleotide the emission stems from guanine. The values of the fluorescence quantum yield for the three excitation wavelengths are found to be very low, 0.8 x 10(-5), 0.8 x 10(-5), and 2.8 x 10(-5), respectively; these are compatible with transfer of energy from the lower-energy electronic state of guanine, before vibronic relaxation is established, to cytosine. Upon denaturation, the fluorescence spectrum becomes very broad and the fluorescence quantum yield increases; these observations support the authenticity of the emission from the nondenatured polynucleotide.  相似文献   

3.
The quantum yield and the relative photochemical yield for lumirubin formation from bilirubin bound to human albumin were determined at eight wavelengths from 410 to 520 nm. The quantum yield averaged 0.0015 for irradiation between 450 and 490 nm. At 410 and 430 nm the quantum yield was slightly lower. At the long wavelength end of the absorption band, from 500 to 520 nm, the quantum yield averaged 0.003. The relative photochemical yield, normalized to constant fluence, was greatest at 500 nm.  相似文献   

4.
This work provides a dose-response model of UV-induced epidermal-stratum corneum thickening induced by irradiation at wavelength lambda. This model assumes that photobiochemical reaction(s) can give rise to hyperplasia in a manner which is predictable from a simple photochemical kinetic scheme. In this work, we derive an equation which predicts an approximately linear relationship between the logarithm of the increase in optical skin thickening measured at 320 nm (delta OD320) and total cumulative dose (DT) seen by the target cells in or near the basal layer. For each excitation wavelength lambda, the slope R(lambda) of the log delta OD320 vs DT plot is proportional to epsilon(lambda) phi rx, where epsilon(lambda) is the extinction coefficient for the target chromophore at excitation wavelength, and phi rx is the quantum yield for the photochemical reaction(s) leading to hyperplasia. Our data previously obtained from irradiation of SK-1 hairless mice with "monochromatic" UV wavebands at 280, 290, 300, 307 and 313 nm (Menter et al., 1988, Photochem. Photobiol. 47, 225-260.) and data from Sterenborg and van der Leun at 254 and 313 nm (1988, Photodermatology 5, 71-82) are in good agreement with this model, except for 254 and 280 nm excitation, which are greatly attenuated by epidermis-stratum corneum. For excitation at the latter wavelengths, "dark" regressive processes successfully compete with the "light" reaction(s) which lead to (pre)cancerous lesion. This difficulty notwithstanding, the "intrinsic" action spectrum for hyperplasia derived from these measurements indicates that the target chromophore preferentially absorbs in the UV-C region.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Various bisindolylmaleimides have fluorescence emission maxima wavelengths longer than 500 nm, large Stokes shifts longer than 200 nm, different fluorescence emission wavelengths at an excitation wavelength of 365 nm, and a long-lasting chemiluminescence. The expansion of the pi-conjugation, the pi-bond electronic structure, and oxidation of the C=C bond at the 2,3-position of the maleimide moiety are crucial for producing these fluorescence and chemiluminescence properties.  相似文献   

6.
Water-soluble CdTe quantum dots (QDs) and their conjugates with antibodies and antigenes were prepared by optimized procedures for applications in CE immunoassays. The QD size of 3.5 nm, excitation spectrum in the range of 300-500 nm, the maximum wavelength of the emission spectrum at 610 nm, quantum yield of 0.25 and luminescence lifetimes in the range of 3.6-43 ns were determined. The 0.1 M solution of TRIS/TAPS (pH 8.3) was found to be the optimum buffer for the separation of the antiovalbumin-ovalbumin immunocomplex from the free conjugates of QDs.  相似文献   

7.
The change in fluorescence quantum yield for indole as a function of excitation wavelength between 250 and 220 nm is found to vary with the static dielectric constant of various alcohol—water mixtures at 296 K. The supports the intermediacy of a CTTS state in the photoionization process.  相似文献   

8.
硅掺杂碳量子点荧光猝灭法测定水样中铜(Ⅱ)   总被引:1,自引:0,他引:1  
3-氨丙基三甲氧基硅烷(APTMS)与戊二醛(GA)混合前驱物合成的硅掺杂碳量子点(SDCQDs),其最大吸收、激发和发射波长分别为259,245,395 nm,量子产率为13.60%,XPS谱图表明碳量子点掺杂Si,且富含甲亚胺基团和硅氧键。Cu~(2+)对碳量子点荧光产生猝灭作用,依据Cu~(2+)浓度与碳量子点荧光强度猝灭率的相关性,建立碳量子点荧光探针测定水样中Cu~(2+)的分析方法,其它金属离子对Cu~(2+)干扰程度较小,回收率为91.4%~100.8%,检出限为0.13μmol/L,相对标准偏差为0.20%~0.92%。  相似文献   

9.
Red to blue tunable upconversion in Tm3+-doped ZrO2 nanocrystals   总被引:3,自引:0,他引:3  
The effect of dopant concentration on the blue upconversion (UPC) emission of Tm(3+) -doped ZrO(2) nanocrystals under different excitation wavelengths in the red region is reported. The UPC emissions are due to the f-f electronic transitions from excited states (1)G(4) and (1)D(2) of Tm(3+). We observed a chromatic change in the UPC with tuning the excitation wavelength. The UPC emission bands at 475, 488, and 501 nm are observed under excitation at 649 nm, but bands centered at 454 and 460 nm are observed when the excitation wavelength is tuned to 655 nm. The UPC emission could be tuned from 501 to 454 nm ( approximately 47 nm) by changing the excitation wavelength from 649 to 655 nm ( approximately 6 nm). The pump power dependence of the emission bands at 475, 488, and 501 nm were investigated on excitation intensity at 649 nm, and the emission bands at 454 and 460 nm are investigated on excitation intensity at 655 nm, which confirms that all of these UPC emission lines are a two-photon absorption process.  相似文献   

10.
The average fluorescence lifetimes of nine North Sea crude oils with API gravities of between 20 and 51 were measured using a modular, filter based, instrument developed in-house. Two pulsed light emitting diode (LED) excitation sources (460 and 510 nm) were used to excite fluorescence, the lifetime of which was measured at a range of emission wavelengths. Fluorescence lifetimes were found to vary from 1.8 to 8.2 ns with confidence intervals of +/- 0.11 ns. The average lifetimes at all emission wavelengths were linearly correlated with API gravity and with aromatic concentration with the best results being obtained with the 460 nm excitation source. Predictive models with an accuracy of +/- 7.6 API degrees were generated using partial least-squares methods from average fluorescence lifetimes measured at an emission wavelength of 500 nm using 460 nm excitation. A better correlation was found between the aromatic concentration of the oils and the ratio of the average fluorescence lifetimes at measured at 550 and 650 nm using 460 nm excitation. This led to a quantitative model with an accuracy of +/- 5.4% for aromatic concentration.  相似文献   

11.
The room-temperature optical properties of calf thymus DNA, with about 75% of its guanine residues methylated at position N-7, are compared with those of 7-methyl GMP which has the same fluorophore. The fluorescence spectrum of the methylated guanine residues depends strongly on the excitation wavelength, shifting to the blue as the wavelength increases. The fluorescence quantum yield, corrected for the contribution to absorption by the other virtually nonfluorescent residues, exhibits a pronounced drop at long excitation wavelengths relative to that for excitation at 265 nm. The degree of fluorescence polarization exhibits a weak dependence on the excitation and emission wavelengths. For 7-methyl GMP, the fluorescence spectrum is very weakly dependent on the excitation wavelength and its fluorescence quantum yield shows a moderate increase at long wavelengths. The degree of fluorescence polarization increases with increasing excitation wavelength particularly when monitoring the emission in the short wavelength region of the fluorescence spectrum. A pronounced drop of unknown origin is observed when exciting at 265 nm, which is not observed for methylated DNA. The methylated DNA data are interpreted in terms of a combination of (i) a heterogeneous environment of the methylated guanine residues, which results from sequence-dependent stacking interactions, and (ii) transfer of excitation energy from the other residues to the fluorescing methylated guanine residues. From the values of the quantum yields and those of the decay times, which we have recently reported (Georghiou et al., 1985), the following values are obtained for the radiative, kt, and the sum of the nonradiative, σk1, rate constants for deexcitation of the excited states of methylated DNA and its free fluorophore: 1.6 × 108 s-1 7 × 107 s-1 and 5 × 1010 s-lvs 6 × 109 s-1. Because of energy transfer from the other residues. the kf value for the methylated guanine residues is overestimated but their σk1, value is not affected significantly and is by about an order of magnitude larger than that for 7-methyl GMP, apparently because of stacking interactions.  相似文献   

12.
Currently, photonic crystals are attracting a lot of interest because of their ability to harvest light from a device into specific directions and wavelengths. In this work we have proven the theoretical prediction that in the case of an emission overlapping with the photonic stop band, the intensity is redistributed at different wavelengths. This prediction has two major consequences: (i) the total QY remains the same and (ii) the intensity increases just outside the band gap. In our case, Eu(2+) is the responsible emitter in a hybrid material based on GaN on silica, which has a fairly broad emission with its maximum at 500 nm. The GaN and Eu(2+) were placed inside an inverse opal of silica (air voids in silica matrix). The size of the holes in the different samples was varied between 300 and 600 nm, in order to tune the stop band in different positions with respect to the Eu(2+) emission. The measured quantum yield was constant for the different samples at about 5%, the lifetime of the Eu(2+) increased in the forbidden range, and its emission intensity was squeezed toward the side of the stop band, with a concomitant decrease of the lifetime. The enhancement of the emission intensity at a certain energy range opens new possibilities for the design of more efficient devices, providing color purification and intensification at whichever wavelength is needed.  相似文献   

13.
The unusual green photoluminescence (PL) of N,N-dimethylformamide (DMF)/hydrochloric acid (HCl)/europium chloride (EuCl3) solutions discovered earlier was investigated in more detail to clarify the emission mechanism. It was revealed that the DMF/HCl pair alone can yield a green PL band under UV excitation, and the emission has features of that of excimers. The addition of EuCl3 salt to the solution further stimulates the green emission. The quantum yield of the line emission of Eu3+ ions at 592 and 612 nm is also affected by the presence of HCl in the solution. Both the green emission band and Eu3+ emission lines possess a common channel of excitation at approximately 280 nm. This channel is the only source for the green emission band and an additional source for the Eu3+ emission lines, which can also be stimulated through a conventional Eu3+ excitation channel at 394 nm. The common excitation channel was found to be time-dependent, and its excitation maximum gradually shifts to longer wavelengths. Changes in the PL profiles of europium ions were also observed depending on the presence of HCl and the solution aging.  相似文献   

14.
Haustein C  Savage WD  Ishak CF  Pflaum RT 《Talanta》1989,36(11):1065-1068
The room-temperature phosphorescence of indole and thirteen substituted indoles on Schleicher and Schüll 2040A filter paper is reported. Caesium and iodide ions are effective in increasing the emission intensity. In the presence of iodide, the excitation and emission wavelengths of indole are 279 and 440 nm respectively. The excitation and emission wavelengths of indoles with aliphatic groups in the 3-position are 288-289 and 443-449 nm respectively. Indoles with 3,5-substitution have excitation and emission wavelengths of 300-308 and 448-460 nm respectively. Indoxylsulphate and indoxyl-beta-d-glucoside were the only indoles surveyed for which variations in the excitation and emission wavelengths depended on the heavy-atom ion present. These compounds had excitation wavelengths ranging from 288 to 388 nm, depending on which heavy-atom perturber was used. Emission wavelengths were 460-500 nm. Log-log plots of intensity vs. concentration were linear between 0.05 and 700 microg/ml for all the compounds studied, with detection limits in the nanogram range.  相似文献   

15.
The combination of remote/standoff sensing and laser-induced fluorescence (LIF) spectroscopy shows potential for detection of uranyl (UO2(2+)) compounds. Uranyl compounds exhibit characteristic emission in the 450-600 nm (22,200 to 16,700 cm(-1)) spectral region when excited by wavelengths in the ultraviolet or in the short-wavelength portion of the visible spectrum. We report a parametric study of the effects of excitation wavelength [including 532 nm (18,797 cm(-1)), 355 nm (28,169 cm(-1)), and 266 nm (37,594 cm(-1))] and excitation laser power on solid-state uranium compounds. The uranium compounds investigated include uranyl nitrate, uranyl sulfate, uranyl oxalate, uranium dioxide, triuranium octaoxide, uranyl acetate, uranyl formate, zinc uranyl acetate, and uranyl phosphate. We observed the characteristic uranyl fluorescence spectrum from the uranium compounds except for uranium oxide compounds (which do not contain the uranyl moiety) and for uranyl formate, which has a low fluorescence quantum yield. Relative uranyl fluorescence intensity is greatest for 355 nm excitation, and the order of decreasing fluorescence intensity with excitation wavelength (relative intensity/laser output) is 355 nm > 266 nm > 532 nm. For 532 nm excitation, the emission spectrum is produced by two-photon excitation. Uranyl fluorescence intensity increases linearly with increasing laser power, but the rate of fluorescence intensity increase is different for different emission bands.  相似文献   

16.
以巯基乙酸为稳定剂,通过控制反应温度、反应时间及pH值,在水相中合成了稳定的受激发出紫光、蓝光、绿光、黄光和红光的CdS量子点;通过紫外可见吸收光谱、荧光光谱和X射线衍射谱(XRD)对产物的光学性能和晶体结构进行了表征,结果表明所合成的CdS量子点分散性较好,量子产率为8%,为立方晶型,粒径约1 nm;利用荧光倒置显微镜观察了量子点在洋葱内表皮细胞膜上聚集及受激发射荧光行为,实现细胞膜初步标记.  相似文献   

17.
We assessed the contribution of UV-induced violet-blue-green leaf fluorescence to photosynthesis in Poa annua, Sorghum halepense and Nerium oleander by measuring UV-induced fluorescence spectra (280-380 nm excitation, 400-550 nm emission) from leaf surfaces and determining the monochromatic UV action spectra for leaf photosynthetic O2-evolution. Peak fluorescence emission wavelengths from leaf surfaces ranged from violet (408 nm) to blue (448 nm), while excitation peaks for these maxima ranged from 333 to 344 nm. Action spectra were developed by supplementing monochromatic radiation from 280 to 440 nm, in 20 nm increments, to a visible nonsaturating background of 500 mumol m-2 s-1 photosynthetically active radiation and measuring photosynthetic O2-evolution rates. Photosynthetic rates tended to be higher with the 340 nm supplement than with higher or lower wavelength UV supplements. Comparing photosynthetic rates with the 340 nm supplement to those with the 400 nm supplement, the percentage enhancement in photosynthetic rates at 340 nm ranged from 7.8 to 9.8%. We suspect that 340 nm UV improves photosynthetic rates via fluorescence that provides violet-blue-green photons for photosynthetic energy conversion because (1) the peak excitation wavelength (340 nm) for violet-blue-green fluorescence from leaves was also the most effective UV wavelength at enhancing photosynthetic rates, and (2) the magnitude of photosynthetic enhancements attributable to supplemental 340 nm UV was well correlated (R2 = 0.90) with the apparent intensity of 340 nm UV-induced violet-blue-green fluorescence emission from leaves.  相似文献   

18.
Classical photo-induced fluorescence methods are conducted in two steps: a UV irradiation step in order to form a photo-induced compound followed by its fluorimetric determination. Automated flow injection methods are frequently used for these analyses. In this work, we propose a new method of direct laser photo-induced fluorescence analysis. This new method is based on direct irradiation of the analyte in a fluorimetric cell in order to form a photo-induced fluorescent compound and its direct fluorimetric detection during a short irradiation time. Irradiation is performed with a tuneable Nd:YAG laser to select the optimal excitation wavelength and to improve the specificity. It has been applied to the determination of bisphenol A, an endocrine disrupter compound that may be a potential contaminant for food. Irradiation of bisphenol A at 230 nm produces a photo-induced compound with a much higher fluorescence quantum yield and specific excitation/emission wavelengths. In tap water, the fluorescence of bisphenol A increases linearly versus its concentration and, its determination by direct laser photo-induced fluorescence permits to obtain a low limit of detection of 17 μg L−1.  相似文献   

19.
In this paper, we report a new strategy for constructing a dye library with large Stokes shifts. By coupling a dark donor with BODIPY acceptors of tunable high quantum yield, a novel dark resonance energy transfer (DRET)‐based library, named BNM , has been synthesized. Upon excitation of the dark donor ( BDN ) at 490 nm, the absorbed energy is transferred to the acceptor ( BDM ) with high efficiency, which was tunable in a broad range from 557 nm to 716 nm, with a high quantum yield of up to 0.8. It is noteworthy to mention that the majority of the non‐radiative energy loss of the donor was converted into the acceptor’s fluorescence output with a minimum leak of donor emission. Fluorescence imaging tested in live cells showed that the BNM compounds are cell‐permeable and can also be employed for live‐cell imaging. This is a new library which can be excited through a dark donor allowing for strong fluorescence emission in a wide range of wavelengths. Thus, the BNM library is well suited for high‐throughput screening or multiplex experiments in biological applications by using a single laser excitation source.  相似文献   

20.
The photodissociation dynamics of iodocyclohexane has been studied using velocity map imaging following excitation at many wavelengths within its A-band (230 ≤ λ ≤ 305 nm). This molecule exists in two conformations (axial and equatorial), and one aim of the present experiment was to explore the extent to which conformer-specific fragmentation dynamics could be distinguished. Ground (I) and spin-orbit excited (I?) state iodine atom products were monitored by 2 + 1 resonance enhanced multiphoton ionization, and total kinetic energy release (TKER) spectra and angular distributions derived from analysis of images recorded at all wavelengths studied. TKER spectra obtained at the longer excitation wavelengths show two distinct components, which can be attributed to the two conformers and the different ways in which these partition the excess energy upon C-I bond fission. Companion calculations based on a simple impulsive model suggest that dissociation of the equatorial (axial) conformer preferentially yields vibrationally (rotationally) excited cyclohexyl co-fragments. Both I and I? products are detected at the longest parent absorption wavelength (λ ~ 305 nm), and both sets of products show recoil anisotropy parameters, β > 1, implying prompt dissociation following excitation via a transition whose dipole moment is aligned parallel to the C-I bond. The quantum yield for forming I? products, Φ(I?), has been determined by time resolved infrared diode laser absorption methods to be 0.14 ± 0.02 (at λ = 248 nm) and 0.22 ± 0.05 (at λ = 266 nm). Electronic structure calculations indicate that the bulk of the A-band absorption is associated with transition to the 4A(') state, and that the (majority) I atom products arise via non-adiabatic transfer from the 4A(') potential energy surface (PES) via conical intersection(s) with one or more PESs correlating with ground state products.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号