首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
考虑了第一类Fredholm积分方程的求解.采用有矩阵压缩策略的多尺度配置方法来离散Lavrentiev迭代方程,在积分算子是弱扇形紧算子时,给出近似解的先验误差估计,并给出了改进的后验参数的选择方法,得到了近似解的收敛率.最后,举例说明算法的有效性.  相似文献   

2.
In this article we discuss a regularization of semi-discrete ill-posed problem appearing as a result of application of a collocation method to Fredholm integral equation of the first kind. In this context we analyse Tikhonov regularization in Sobolev scales and prove error bounds under general source conditions. Moreover, we study an a posteriori regularization parameter choice by means of the balancing principle.  相似文献   

3.
In this paper we consider a collocation method for solving Fredholm integral equations of the first kind, which is known to be an ill-posed problem. An “unregularized” use of this method can give reliable results in the case when the rate at which smallest singular values of the collocation matrices decrease is known a priori. In this case the number of collocation points plays the role of a regularization parameter. If the a priori information mentioned above is not available, then a combination of collocation with Tikhonov regularization can be the method of choice. We analyze such regularized collocation in a rather general setting, when a solution smoothness is given as a source condition with an operator monotone index function. This setting covers all types of smoothness studied so far in the theory of Tikhonov regularization. One more issue discussed in this paper is an a posteriori choice of the regularization parameter, which allows us to reach an optimal order of accuracy for deterministic noise model without any knowledge of solution smoothness.  相似文献   

4.
Numerical differentiation is a classical ill-posed problem. In this paper, a wavelet regularization method for high order numerical derivatives is given and an order optimal Hölder-type stability estimate is also provided. Some numerical examples show that the method is very effective.  相似文献   

5.
A wavelet-Galerkin method for high order numerical differentiation   总被引:1,自引:0,他引:1  
Numerical differentiation is a classical ill-posed problem. In this paper, we propose a wavelet-Galerkin method for high order numerical differentiation. By an appropriate choice of the regularization parameter an order optimal stability estimate of Hölder type is obtained. Some numerical examples show that the method is effective and stable.  相似文献   

6.
The aim of this work is to identify numerically, for the first time, the time-dependent potential coefficient in a fourth-order pseudo-parabolic equation with nonlocal initial data, nonlocal boundary conditions, and the boundary data as overdetermination condition. This problem emerges significantly in the modeling of various phenomena in physics and engineering. From literature we already know that this inverse problem has a unique solution. However, the problem is still ill-posed by being unstable to noise in the input data. For the numerical realization, we apply the quintic B-spline (QB-spline) collocation method for discretizing the pseudo-parabolic problem and the Tikhonov regularization for finding a stable and accurate solution. The resulting nonlinear minimization problem is solved using the MATLAB subroutine lsqnonlin. Moreover, the von Neumann stability analysis is also discussed.  相似文献   

7.
In this discussion, a new numerical algorithm focused on the Haar wavelet is used to solve linear and nonlinear inverse problems with unknown heat source. The heat source is dependent on time and space variables. These types of inverse problems are ill-posed and are challenging to solve accurately. The linearization technique converted the nonlinear problem into simple nonhomogeneous partial differential equation. In this Haar wavelet collocation method (HWCM), the time part is discretized by using finite difference approximation, and space variables are handled by Haar series approximation. The main contribution of the proposed method is transforming this ill-posed problem into well-conditioned algebraic equation with the help of Haar functions, and hence, there is no need to implement any sort of regularization technique. The results of numerical method are efficient and stable for this ill-posed problems containing different noisy levels. We have utilized the proposed method on several numerical examples and have valuable efficiency and accuracy.  相似文献   

8.
Inverse problems based on first-kind Volterra integral equations appear naturally in the study of many applications, from geophysical problems to the inverse heat conduction problem. The ill-posedness of such problems means that a regularization technique is required, but classical regularization schemes like Tikhonov regularization destroy the causal nature of the underlying Volterra problem and, in general, can produce oversmoothed results. In this paper we investigate a class of local regularization methods in which the original (unstable) problem is approximated by a parameterized family of well-posed, second-kind Volterra equations. Being Volterra, these approximating second-kind equations retain the causality of the original problem and allow for quick sequential solution techniques. In addition, the regularizing method we develop is based on the use of a regularization parameter which is a function (rather than a single constant), allowing for more or less smoothing at localized points in the domain. We take this approach even further by adopting the flexibility of an additional penalty term (with variable penalty function) and illustrate the sequential selection of the penalty function in a numerical example.  相似文献   

9.
Consider a numerical differential problem, which aims to compute the second order derivative of a function stably from its given noisy data. For this ill-posed problem, we introduce the Lavrent′ev regularization scheme by reformulating this differentiation problem as an integral equation of the first kind. The advantage of this proposed scheme is that we can give the regularizing solution by an explicit integral expression, therefore it is easy to be implemented. The a-priori and a-posterior choice strategies for the regularization parameter are considered, with convergence analysis and error estimate of the regularizing solution for noisy data based on the integral operator decomposition. The validity of the proposed scheme is shown by several numerical examples.  相似文献   

10.
A two-step iterative process for the numerical solution of nonlinear problems is suggested. In order to avoid the ill-posed inversion of the Fréchet derivative operator, some regularization parameter is introduced. A convergence theorem is proved. The proposed method is illustrated by a numerical example in which a nonlinear inverse problem of gravimetry is considered. Based on the results of the numerical experiments practical recommendations for the choice of the regularization parameter are given. Some other iterative schemes are considered.  相似文献   

11.
In this work, we propose an approximate optimal control formulation of the Cauchy problem for the Stokes system. Here the problem is converted into an optimization one. In order to handle the instability of the solution of this ill-posed problem, a regularization technique is developed. We add a term in the least square function which happens to vanish while the algorithm converges. The efficiency of the proposed method is illustrated by numerical experiments.  相似文献   

12.
In this paper, we consider a Cauchy problem of the time fractional diffusion equation (TFDE). Such problem is obtained from the classical diffusion equation by replacing the first-order time derivative by the Caputo fractional derivative of order α (0 < α ≤ 1). We show that the Cauchy problem of TFDE is severely ill-posed and further apply a new regularization method to solve it based on the solution given by the Fourier method. Convergence estimates in the interior and on the boundary of solution domain are obtained respectively under different a-priori bound assumptions for the exact solution and suitable choices of regularization parameters. Finally, numerical examples are given to show that the proposed numerical method is effective.  相似文献   

13.
In this paper, we consider large-scale linear discrete ill-posed problems where the right-hand side contains noise. Regularization techniques such as Tikhonov regularization are needed to control the effect of the noise on the solution. In many applications such as in image restoration the coefficient matrix is given as a Kronecker product of two matrices and then Tikhonov regularization problem leads to the generalized Sylvester matrix equation. For large-scale problems, we use the global-GMRES method which is an orthogonal projection method onto a matrix Krylov subspace. We present some theoretical results and give numerical tests in image restoration.  相似文献   

14.
Summary. In the study of the choice of the regularization parameter for Tikhonov regularization of nonlinear ill-posed problems, Scherzer, Engl and Kunisch proposed an a posteriori strategy in 1993. To prove the optimality of the strategy, they imposed many very restrictive conditions on the problem under consideration. Their results are difficult to apply to concrete problems since one can not make sure whether their assumptions are valid. In this paper we give a further study on this strategy, and show that Tikhonov regularization is order optimal for each with the regularization parameter chosen according to this strategy under some simple and easy-checking assumptions. This paper weakens the conditions needed in the existing results, and provides a theoretical guidance to numerical experiments. Received August 8, 1997 / Revised version received January 26, 1998  相似文献   

15.
The numerical solution of linear discrete ill-posed problems typically requires regularization, i.e., replacement of the available ill-conditioned problem by a nearby better conditioned one. The most popular regularization methods for problems of small to moderate size, which allow evaluation of the singular value decomposition of the matrix defining the problem, are the truncated singular value decomposition and Tikhonov regularization. The present paper proposes a novel choice of regularization matrix for Tikhonov regularization that bridges the gap between Tikhonov regularization and truncated singular value decomposition. Computed examples illustrate the benefit of the proposed method.  相似文献   

16.
In this paper, we consider an inverse problem of determining an unknown source for the Poisson equation. Since this problem is mildly ill-posed, we apply a central difference regularization method to solve this problem. Furthermore, the convergence estimate is established under a priori choice of the regularization parameter. Some numerical results verify that the proposed method is stable and effective.  相似文献   

17.
用Tikhonov正则化方法求一阶和两阶的数值微分   总被引:5,自引:0,他引:5  
Numerical differentiation is an ill-posed problem, which is important in scientific research and practical applications.In this paper, we use the Tikhonov regularization method to discuss the first and secord order derivatives of a smooth function. The error estimate is also given. And the numerical results prove that our method is applicable.  相似文献   

18.
In many science and engineering applications, the discretization of linear ill-posed problems gives rise to large ill-conditioned linear systems with the right-hand side degraded by noise. The solution of such linear systems requires the solution of minimization problems with one quadratic constraint, depending on an estimate of the variance of the noise. This strategy is known as regularization. In this work, we propose a modification of the Lagrange method for the solution of the noise constrained regularization problem. We present the numerical results of test problems, image restoration and medical imaging denoising. Our results indicate that the proposed Lagrange method is effective and efficient in computing good regularized solutions of ill-conditioned linear systems and in computing the corresponding Lagrange multipliers. Moreover, our numerical experiments show that the Lagrange method is computationally convenient. Therefore, the Lagrange method is a promising approach for dealing with ill-posed problems. This work was supported by the Italian FIRB Project “Parallel algorithms and Nonlinear Numerical Optimization” RBAU01JYPN.  相似文献   

19.
In this article, we investigate the connection between regularization theory for inverse problems and dynamic programming theory. This is done by developing two new regularization methods, based on dynamic programming techniques. The aim of these methods is to obtain stable approximations to the solution of linear inverse ill-posed problems. We follow two different approaches and derive a continuous and a discrete regularization method. Regularization properties for both methods are proved as well as rates of convergence. A numerical benchmark problem concerning integral operators with convolution kernels is used to illustrate the theoretical results.  相似文献   

20.
散乱数据的数值微分及其误差估计   总被引:7,自引:1,他引:6  
1 背景及问题的提出 导数是数学分析中的一个基本的慨念。对于数学工作者来讲,计算导数不是一项特别困难的工作。但是,对于研究实际问题的科学工作者来讲,这项工作就不是一件简单的工作了,首先,求导数的问题是一个典型的Hadamard意义下的不适定问题([5],[12]等)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号