首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Curcumin was coated on P25 TiO2 by using impregnation method from freshly prepared curcumin solution. The resulting products (Cur–TiO2–P25) was studied by several techniques such as X-ray diffraction, scanning electron microscopy, transmission electron microscopy, Fourier-transformed infrared spectroscopy, specific surface area by the Brunauer–Emmett–Teller method, and UV–Vis diffused reflectance spectroscopy. Experimental results revealed that impregnation of curcumin at 0.5, 3, 5, and 7 wt% did not affect the native phase of anatase and rutile in P25 significantly, however, it caused red shift of absorption onset in all curcumin-coated samples. The Cur–TiO2–P25 showed enhanced adsorption efficiency and increased photocatalytic activity under visible light with optimal result at 5 wt% curcumin content. Commercial anatase and rutile coated with curcumin (Cur–TiO2–an and Cur–TiO2–ru) were also prepared by the same method for the use in comparative studies of photodegradation of dyes. Cur–TiO2–an and Cur–TiO2–ru were also characterized with some selected equipment above but not as extensively as the Cur–TiO2–P25. Curcumin coating helped improve photocatalytic efficiencies of P25 and anatase but not for rutile. The mechanism of photocatalytic reaction was proposed that under visible light irradiation, curcumin molecule could act as dye sensitizing agent that injected electron into the conduction band of TiO2 leading to photodegradation of dyes.  相似文献   

2.
Poly(l-lactide) (PLLA) nanoparticles loaded with asiatic acid (AA) were successfully produced by rapid expansion of a subcritical solution into an aqueous receiving solution containing a dispersing agent. A mixture of carbon dioxide (CO2) and ethanol (EtOH) with a weight ratio of 1:1 was used as the solvent for AA and PLLA. Two surfactants, Pluronic F127 and sodium dodecyl sulfate were employed. The former was found to be more effective for stabilizing AA-loaded PLLA nanoparticles, as a rapid expansion into a 0.1 wt% Pluronic F127 solution produced a stable nanosuspension consisting mainly of well-dispersed, individual nanoparticles. The effects of rapid expansion-processing conditions—AA to PLLA weight ratio and pre-expansion temperature (Tpre)—on the size and morphology of composite nanoparticles, and the loading capacity and entrapment efficiency of AA in PLLA nanoparticles, were systematically investigated. It was found that AA-loaded PLLA nanoparticles with a size range of 30–100 nm were consistently fabricated by rapid expansion at Tpre of 70–100 °C and AA to PLLA weight ratios of 1:2 and 1:4, and with a constant pre-expansion pressure of 330 bar. The Tpre and AA to PLLA weight ratio had no significant effects on the size of the nanoparticles. The AA to PLLA weight ratio is a controlling parameter for both the loading capacity and the entrapment efficiency of AA in PLLA nanoparticles. The loading capacity and entrapment efficiency increased from 8–11 to 16–21 wt%, and 38–57 to 50–62 wt%, respectively, when the AA to PLLA weight ratio changed from 1:4 to 1:2. However, increasing the Tpre from 70 to 100 °C decreased both the loading capacity and entrapment efficiency of AA in PLLA nanoparticles by ~20–30%.  相似文献   

3.
Novel titanium oxide (TiO2) nanoparticles were fabricated via a modified propanol drying step. These nanoparticles were loaded with anti-cancer drug paclitaxel (PTX) to yield PTX-TiO2 nanocomposites. The nanocomposites were characterized for their size and surface morphology employing nanoparticle tracking analysis (NTA) and scanning electron microscopy (SEM). The SEM images showed spherical particles with smooth surface and narrow size distribution of ~30–40 nm, which was also supported by NTA analysis data. The drug loading efficiency of the air-dried nanoparticles was observed to be ~63.61 % while those prepared through propanol-induced drying step showed ~69.70 %, thereby demonstrating higher efficiency of the latter. In vitro pH-dependent release of the loaded PTX was observed with higher release at acidic pH compared with physiological pH. Cell uptake studies suggested of time-dependent internalization of nanocomposites with significant improvement in uptake by increasing incubation time from 2 to 24 h, as evidenced by flow cytometry. Further, the cell viability as a measure of anti-cancer activity revealed that cell viability upon exposure to PTX only was 40.5 % while that of PTX-TiO2 nanocomposite showed 21.6 % viability after 24 h, suggesting better anti-cancer efficacy of nanocomposites. Apoptosis studies revealed that cells treated with PTX-TiO2 nanocomposites possessed more amount of apoptotic bodies as compared to those treated with PTX only.  相似文献   

4.
In the presented work, amphiphilic nanoparticles based on chitosan and carboxy-enriched polylactic acid have been prepared to improve the stability of the pro-drug temozolomide in physiological media by encapsulation. The carrier, with a diameter in the range of 150–180 nm, was able to accommodate up to 800 μg of temozolomide per mg of polymer. The obtained formulation showed good stability in physiological condition and preparation media up to 1 month. Temozolomide loaded inside the carrier exhibited greater stability than the free drug, in particular in simulated physiological solution at pH 7.4 where the hydrolysis in the inactive metabolite was clearly delayed. CS-SPLA nanoparticles demonstrated a pH-dependent TMZ release kinetics with the opportunity to increase or decrease the rate. Mass spectroscopy, UV-Vis analysis, and in vitro cell tests confirmed the improvement in temozolomide stability and effectiveness when loaded into the polymeric carrier, in comparison with the free drug.  相似文献   

5.
A new oral delivery system, polybutylcyanoacrylate nanoparticles (PBCNs), was introduced to improve the oral bioavailability of curcumin (CUR), a poorly soluble drug. The formulation was optimized by orthogonal design and the optimal PBCNs loading CUR exhibited a spherical shape under transmission electron microscopy with a range of 40?C400?nm. Physicochemical state of CUR in PBCN was investigated by X-ray diffraction and the possible structure changes occurring in CUR after conjugating with polybutylcyanoacrylate were studied with FTIR. The results indicated that CUR in PBCN was in a non-crystalline state and CUR was encapsulated in PBCN without chemical reaction. The oral pharmacokinetic study was conducted in rats and the relative bioavailability of CUR encapsulated PBCNs to the crude CUR was more than 800%. The in situ absorption experiment in rat intestine indicated the absorption was first order with passive diffusion mechanism. The absorption results in various segments of intestine showed that the main absorption sites were ileum and colon. It can be concluded that PBCNs as an oral carrier can significantly improve the oral absorption of a poorly soluble drug.  相似文献   

6.
A simple and rapid process for the synthesis of Cu2SnS3 (CTS) nanoparticles by microwave heating of metal–organic precursor solution is described. X-ray diffraction and Raman spectroscopy confirm the formation of tetragonal CTS. X-ray photoelectron spectroscopy indicates the presence of Cu, Sn, S in +1, +4, ?2 oxidation states, respectively. Transmission electron microscopy divulges the formation of crystalline tetragonal CTS nanoparticles with sizes ranging 2–25 nm. Diffuse reflectance spectroscopy in the 300–2,400 nm wavelength range suggests a band gap of 1.1 eV. Pellets of CTS nanoparticles show p-type conduction and the carrier transport in temperature range of 250–425 K is thermally activated with activation energy of 0.16 eV. Thin film solar cell (TFSC) with architecture: graphite/Cu2SnS3/ZnO/ITO/SLG is fabricated by drop-casting dispersion of CTS nanoparticles which delivered a power conversion efficiency of 0.135 % with open circuit voltage, short circuit current and fill factor of 220 mV, 1.54 mA cm?2, 0.40, respectively.  相似文献   

7.
Copper oxide nanoparticles produced in double distilled water at room temperature by laser ablation of the Cu target have been investigated using TEM, SEM, AFM, X-ray diffraction, photo-spectrometry and PIXE. Q-switched Nd:YAG laser operating at 1064 nm with a pulse duration of 5–6 ns was used to conduct the experiments in the fluence range of 5.73–9.87 J/cm2. In each experiment, 12,000 laser pulses were used to ablate the target placed in double distilled water. Different diagnostic techniques reveal that the nanoparticles have a size between 2–55 nm and their mean size as well as the width of particle distribution increases with the laser fluence. Since no surface active material (surfactant) was added to water, the nanoparticles aggregated and settled down at the bottom of the container within a week. In addition to stable Cu2O, the XRD spectrum also shows the presence of suboxide Cu64O in the colloidal solution of nanoparticles produced in the present study.  相似文献   

8.
CeO2–MnO x composites possessing rod-like morphology (fixed mole proportion of Ce/Mn) were synthesized through hydrothermal method and chosen as supporters to load PdO nanoparticles (PdO/Ce x Mn1–x ). The size of loaded PdO nanoparticles is about 2 nm. The catalytic behaviors of supported catalysts were examined through the complete catalytic oxidation of benzene. The results illustrated that the activities of supported catalysts were enhanced greatly as compared to unsupported, and the completely conversion temperature of benzene was reduced to ca. 250 °C. The effect of noble metal species (PdO) addition on the catalytic property and crystal structure of composites was researched in detail. The data revealed that the interaction between PdO and supporter, and intrinsic properties of supporter resulted in the enhancement of catalytic abilities.  相似文献   

9.
Calcium carbonate (CaCO3) nanoparticles (9, 15, and 21 nm) were synthesized by solution spray of CaCl2 and NH4HCO3 with sodium lauryl sulfate (SLS) as a stabilizing agent, and their effect was studied on polybutadiene rubber (PBR) with variations in wt% loading (4, 8, and 12%). The results of PBR nanocomposites were compared with commercial CaCO3 (40 μm) and fly ash (75 μm) filled PBR microcomposites. Properties such as tensile strength, young modulus, elongation at break, glass transition temperature, decomposition temperature, and abrasion resistances were determined. Profound effect in properties was observed, because nanometric size of CaCO3 particles synthesized using solution spray technique. Maximum improvement in mechanical and flame retarding properties was observed at 8 wt% of filler loading. This increment in properties was more pronounced in 9-nm size CaCO3. The results were not appreciable above 8 wt% of nanofillers because of agglomeration of nanoparticles. In addition, an attempt was made to consider modeling Young’s modulus of PBR–nano CaCO3 which was predicted by modified Halpin–Tsai equation. It was observed that the predication by the Guth equation and modified Halpin–Tsai equation agreed very well with experimental, whereas the Halpin–Tsai equation can only applied to predict the modulus of rubber nanocomposites in the range of low addition of nanofiller, which agrees the Nielsen equation.  相似文献   

10.
This study is devoted to preparation of novel solid lipid nanoparticles (SLNs) for the encapsulation of curcumin which is produced by micro-emulsion and ultrasonication using stearic acid and tripalmitin as solid lipids, tween80 and span80 as surfactants. The relation between particle size and entrapment efficiency of the produced SLNs was operated by central composite design (CCD) under response likes surface method (RSM). The variables including the ratio of lipids (X1), the ratio of surfactants (X2), drug/lipid ratio (X3), time of sonication (X4) and time of homogenization (X5). Particle size and entrapment efficiency of the loaded curcumin was justified according to the minimum particle size and maximum entrapment efficiency. The curcumin loaded SLNs presented fairly spherical shape with the mean diameter and entrapment efficiency of 112.0 ± 2.6 nm and 98.7 ± 0.3%, respectively. The optimized SLNs were characterized by X-ray diffraction analysis (XRD), differential scanning calorimetry (DSC), photon correlation spectroscopy (PCS) and field emission scanning electron microscopy (FESEM). The drug release profile of the optimal formulated material was examined in aqueous media and almost 30% of the curcumin loaded in SLNs was gradually released during 48 h, which reveals efficient prolonged release of the drug.  相似文献   

11.
A YAG laser operating at the second harmonic wavelength (532 nm, 10 Hz, 8 ns and 40 mJ) was used to elaborate bimetallic nanoparticles by laser ablation of Ni75Pd25 and Au75Ag25 targets in water. TEM–EDX, UV–Vis spectroscopy and PIXE measurements were performed to obtain information on their mean sizes, size distributions and chemical composition as a function of the time of laser ablation. The surface of the laser impacted regions of the targets were characterized by RBS in order to check their composition after the laser ablation. The so-obtained bimetallic nanoparticles always show a homogeneous composition. However, while the composition of Au–Ag nanoparticles was found to be very similar to the one of the alloy target, the composition of the Ni–Pd nanoparticles can be different from the nominal composition of the alloy target. Segregation phenomena can be invoked to explain the difference between the Ni–Pd nanoparticles and the Au–Ag nanoparticles compositions obtained in the same conditions. However, an influence of chemical reactions occurring in the high pressure plasma created locally at liquid–solid interface (called ‘reactive quenching’) cannot be completely ruled out.  相似文献   

12.
Microgels with alginate (Alg) gel cores and shells of SiO2 nanoparticles (so-called colloidosomes) were prepared by self-assembly of SiO2 nanoparticles at ALG aqueous solution–hexane interfaces and subsequent in situ gelation caused by Ca2+ ions that were released from calcium-ethylenediamine tetraacetic acid chelate by decreasing the pH value through the slow hydrolysis of D-Gluconic-δ-lactone. The packing density of SiO2 nanoparticles in the shell was about 0.906, indicating that the SiO2 nanoparticles were present monolayer on the surfaces of the colloidosomes. The half release times of insulin microcrystals were 4 h for Alg gel microspheres and 10 h for Alg/SiO2 colloidosomes at pH 7.4, compared to 1.5 h for bare insulin. The half release times of insulin microcrystals were 12 min for Alg gel microspheres and 30 min for Alg/SiO2 colloidosomes at pH 1.2, compared to 30 s for bare insulin. The release rates of insulin from the colloidosomes with core–shell structure were slower than that from bare insulin crystals due to the dual barriers of the hydrogel cores and the close-packed inorganic shells. The release curves were nicely fitted by the Weibull equation and the release followed Fickian diffusion.  相似文献   

13.
Strontium titanate (SrTiO3) has attracted a lot of attention because of its possible applications in new microelectronic devices. It is a material with a high dielectric constant, low leakage current, and some of its properties can be changed by adding or modifying the concentration of a dopant, which can be used for a wide range of functional purposes, from simple capacitors to complicated microwave devices. Therefore, in this work, we report the development of a new route to synthesize SrTiO3 nanoparticles based on the solvothermal method by employing two precursor solutions: strontium chloride and titanium(IV) butoxide. Our route allows the production of cubic SrTiO3 nanoparticles with a narrow size distribution. The particle sizes range between 8 and 24 nm, forming agglomerates of SrTiO3 in the range of 128–229 nm. It was demonstrated that the Ti/Sr molar ratio employed into the precursor solution has an important effect onto the chemical composition of the resulting SrTiO3 nanoparticles: when using Ti/Sr < 1, the formation and incorporation of the SrCO3 compound into the nanoparticles was observed while with Ti/Sr ≥ 1 nanoparticles are free of contaminants. The as-prepared nanoparticles were characterized by energy-dispersive X-ray spectroscopy, X-ray diffraction, transmission electron microscopy, high-resolution TEM, selected area electron diffraction, scanning electron microscopy, and dynamic light scattering.  相似文献   

14.
The intracerebral antioxidant ability of rats in 8 and 21 % oxygen (O2) atmospheres was estimated from the decay of the electron spin resonance (ESR) signal of 3-methoxycarbonyl-2,2,5,5-tetramethyl-pyrrolidine-1-oxyl (PCAM), blood–brain-barrier (BBB)-permeable stable cyclic nitroxide, in the perfusate from the brain of the rats using the microdialysis-ESR method. The decay rate of PCAM in 8 % O2 was about 1.5 times that in 21 % O2. The oxidation of the perfusate by potassium hexacyanoferrate(III) [K3Fe(CN)6] indicated that PCAM in the rats in 8 % O2 was more greatly reduced to its hydroxylamine than that in 21 % O2. These results showed that the intracerebral antioxidant ability of rats in 8 % O2 was larger than that in 21 % O2. The metal-catalyzed autooxidation of ascorbic acid should be one of the potent factors affecting the intracerebral antioxidant ability of rats in the atmosphere containing different oxygen concentrations.  相似文献   

15.
Curcumin (C21H20O6) is a natural antioxidant, which is considered to be a very useful compound in health matters, and is employed in the treatment of cardiovascular and arthritic illnesses. It is found that the fluorescence of curcumin is greatly enhanced by mixed micelle of sodium dodecyl benzene sulfonate (SDBS) and cetyltrimethylammonium bromide (CTAB) surfactants. Based on this, a sensitive fluorimetric method for the determination of curcumin in aqueous solution is proposed. In the HOAc–NaOAc buffer, the fluorescence intensity of curcumin is proportional to the concentration of curcumin in the range of 0.00020–0.74 μg/mL and the detection limit is 0.017 ng/mL. The synthetic and actual samples are satisfactorily determined. In addition, the interaction mechanism is also studied.  相似文献   

16.
Curcumin (Curcuma longa L), a yellow‐colored Indian spice, receives immense attention for the prevention and treatment of various cancers. Despite the superlative therapeutic efficacy, its poor solubility and instability in the aqueous medium hinder the effectiveness of cancer treatment. The novel preparation of curcumin nanoparticles by mechanical grinding of curcumin crystals without any toxic organic solvents is described here for the first time. The surface of curcumin nanoparticles is modified with the negatively charged polyelectrolyte poly(sodium 4‐strynesulfonate) through hydrogen bonding, which is the key to increasing the solubility and stability in the aqueous medium. The negative surface charge is exploited to conjugate doxorubicin drug molecule on the surface of curcumin nanoparticles as evidenced by fluorescence quenching experiments. Doxorubicin‐conjugated curcumin nanoparticles have a higher solubility with an enhanced cytotoxic effect toward the human hepatocellular carcinoma cell line by a reactive‐oxygen‐species‐mediated p53‐dependent apoptotic pathway. The combination of chemotherapy and photodynamic therapy significantly enhances antitumor activity of doxorubicin‐conjugated curcumin nanoparticles, and is expected to be a promising anticancer agent with special reference to human liver carcinoma cells.  相似文献   

17.
The self-organized titania nanotube arrays (NTAs) fabricated by anodisation has gained enormous interest due to its high spatial orientation, excellent charge transfer structure, and large internal surface area; all are crucial properties influencing the absorption and propagation of light. In this study, a composite material, CdSe nanoparticle/TiO2 nanotube arrays (CdSe/TiO2 NTAs) were assembled through the insertion of CdSe nanoparticles onto the anodized TiO2 nanotube arrays via electrochemical deposition. The annealing temperature of CdSe/TiO2 NTAs was varied from 200 to 350 °C and was found to play an important role in controlling the formation of CdSe nanoparticles on TiO2 NTAs. Characterizations of the films were performed by using field emission scanning electron microscopy coupled with energy dispersive X-ray spectroscopy, high resolution transmission electron microscopes, X-ray diffractometry and UV–visible diffuse reflectance spectroscopy. The transient photocurrent was examined in a three-electrode system under halogen illumination by using the prepared film as the photoanode. It was found that the CdSe nanoparticles were susceptible to spread through electrochemical deposition and formed on the nanotubes by annealing in nitrogen atmosphere. The increment in annealing temperature has resulted in greater amount of CdSe loaded onto TiO2 nanotube arrays. Therefore, a suitable annealing temperature can enhance the particle interaction, leading to considerable improvement in PEC performance. The sensitized CdSe/TiO2 NTAs annealed at 250 °C displayed 84 folds improvement in photoconversion efficiency than that of bare TiO2 NTAs counterparts.  相似文献   

18.
The 100 nm hematite Fe2O3 particles in gelatin gel, dense water solution of sugar, commercial paints, foam, cosmetic cream and friable powder exhibit the mobility in the range of mm/s which was determined from the analysis of the resonance absorption line shape. In the solution of sugar the movement is correlated for particle–particle distance less then 300 nm. The Mössbauer spectroscopy of the iron bearing nanoparticles is proposed as a novel experimental technique for the investigation of the dynamical and structural properties of the soft matter at the mesoscoipic scale.  相似文献   

19.
Nanofibers of polylactide (PLA)/poly(vinylpyrrolidone) (PVP) blends, loaded with TiO2 nanoparticles, have been prepared by an electrospinning method. The electrospun fiber mats were characterized by ATR-FTIR, X-ray diffraction (XRD), SEM, EDX, and UV-visible spectroscopy to examine structures, functional groups, crystallinity, surface morphology, and UV absorptivity. It is clearly observed that TiO2 particles are embedded on the filaments. All PLA-based spun fibers are completely amorphous in nature. The surface morphology of those blended with PVP is smoother and more uniform than the corresponding samples without PVP. Neat PLA fibers show a UV absorption band at around 200 nm, whereas the fibers loaded with TiO2 nanoparticles show an additional absorption band covering the 200–380-nm region. Photo-degradation of the fiber samples are conducted in phosphate buffer solution (PBS) under UVA light. The results indicate that the PVP component dissolves into the PBS solution, and the PLA matrix degrades as a function of time. The fibers are then applied as a catalytic system for epoxidation of unsaturated sunflower oil (SFO), for use as additives or plasticizers for biopolymers, employing a performic acid oxidizing agent. The fibers, especially those containing PVP, can effectively enhance the epoxidation yield of oils with a slow rate of undesirable side reactions, which break ester bonds of triglycerides to generate free fatty acids.  相似文献   

20.
Bimetallic and trimetallic nanoparticles have attracted significant attention in recent times due to their enhanced electrochemical and catalytic properties compared to monometallic nanoparticles. The numerical calculations using Mie theory has been carried out for three-layered metal nanoshell dielectric–metal–metal (DMM) system consisting of a particle with a dielectric core (Al@Al2O3), a middle metal Ag (Au) layer and an outer metal Au (Ag) shell. The results have been interpreted using plasmon hybridization theory. We have also prepared Al@Al2O3@Ag@Au and Al@Al2O3@AgAu triple-layered core–shell or alloy nanostructure by two-step laser ablation method and compared with calculated results. The synthesis involves temporal separations of Al, Ag, and Au deposition for step-by-step formation of triple-layered core–shell structure. To form Al@Ag nanoparticles, we ablated silver for 40 min in aluminium nanoparticle colloidal solution. As aluminium oxidizes easily in water to form alumina, the resulting structure is core–shell Al@Al2O3. The Al@Al2O3 particle acts as a seed for the incoming energetic silver particles for multilayered Al@Al2O3@Ag nanoparticles is formed. The silver target was then replaced by gold target and ablation was carried out for different ablation time using different laser energy for generation of Al@Al2O3@Ag@Au core–shell or Al@Al2O3@AgAu alloy. The formation of core–shell and alloy nanostructure was confirmed by UV–visible spectroscopy. The absorption spectra show shift in plasmon resonance peak of silver to gold in the range 400–520 nm with increasing ablation time suggesting formation of Ag–Au alloy in the presence of alumina particles in the solution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号