首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The generation of a fine pattern of metallic materials from suspensions is gaining significant interest because it is the key in the fabrications of displays and printed circuit boards. In our experiments, a silver nanoparticle suspension was first deposited onto a Kapton® polyimide film by using an electro-hydrodynamic printing system, including a guide ring and pin (nozzle)-to-pin (ground) electrodes. Then after thermal curing of the particles deposited, a conductor line as fine as 32 μm in width and 0.3 μm in thickness was obtained onto the film. The resistivity of the line was about 13 μΩ?cm. The pin type ground electrode was helpful in the deposit of the silver nanoparticle suspension along a specific direction. The guide ring repressed the chaotic motion of the jet and prevented the jet from digressing from the centerline. With the electro-hydrodynamic printing method, a nozzle (inner diameter: 140 μm, outer diameter: 320 μm) much larger than an ink jet nozzle could be used.  相似文献   

2.
In this work, the tunability properties of short-wavelength (λ ~ 3.9 μm) quantum-cascade lasers (QCLs) were studied, which is a first in the world at such short wavelengths. The experimental setup of an external cavity (EC) QCL was arranged in a Littrow configuration. A tuning range over 75 cm?1 has been achieved by using an uncoated 23 μm stripe-width QCL at room temperature. A single-mode operation could be obtained at 2527 and 2544 cm?1 at different grating angles by using an anti-reflection (AR) coated 23 μm ridge. A 5 μm stripe-width QCL without an AR coating could be tuned over 160 cm?1.  相似文献   

3.
The coupling of quantum cascade lasers (QCLs) with an off-axis cavity enhanced absorption (CEA) spectrometer and an astigmatic multiple pass absorption (MPA) spectrometer are described in this paper. A continuous wave (cw) liquid nitrogen cooled distributed-feedback QCL at 5.7 μm and a cw room temperature mode-hop-free external-cavity QCL at 6.1 μm were employed as the light source. For the CEA spectrometer, the effects of mirror size and laser scan rate were evaluated. For the MPA spectrometer, a pair of astigmatic mirrors with a 55 cm mirror distance was aligned to the 366-pass configuration. The jet-cooled samples were generated using a homemade pulsed slit jet nozzle assembly. Two LabVIEW programs were written to automate and synchronize the timing of the laser scan, the pulsed slit jet molecular expansion, and the data acquisition. Infrared spectra of jet-cooled methyl lactate and the Ar–H2O complex and room temperature N2O and NH3 samples were measured using both the rapid scan and the wavelength modulation methods to evaluate the sensitivity and resolution of the CEA and MPA spectrometers. The combination of the MPA spectrometer with the external-cavity QCL using the rapid scan method was found to be the best suited combination to measure high resolution jet-cooled infrared spectra.  相似文献   

4.
Silica aerogel as the most commonly used aerogel has attracted increasing attention from both academia and industries due to its extraordinary performances and potentials. Through this study, influences of the particle size (38–880 μm) on its nano-porous structure and thermal behaviors were addressed based on a series of experimental tests under both ambient and high temperatures (i.e., 1000 °C). It was known from the experimental results that the fractional densities of samples with particle sizes of 270–880 μm were similar, which were about 40% of the sample with a particle size of 38 μm. The ratio of densification was found decrease to about 10–40% when heating time increased from 10 to 90 min. For those samples with 150 μm or finer particles, SiC crystal with 70.8 nm particles was generated, and the pore shape was slit in the silica aerogel. The Brunauer–Emmett–Teller (BET) surface area, cumulative pore volume, and average pore diameter of those heated samples with over 75 μm diameter were about 40%, 20%, and 50% of those unheated (virgin) samples, respectively. Virgin samples showed 18% lower thermal conductivity for 75 μm particles compared to that of 38 μm, while for the heated samples, 38 μm particles showed a 28% lower thermal conductivity than that with 880 μm. Mixture of silica aerogel and other inorganic material particles are recommended for high-temperature applications, while the silica aerogel with different-sized particles are observed better for applications under ambient temperature.  相似文献   

5.
Samples of cretaceous limestone have been treated with three application methods (poultice, immersion and brushing) using different concentrations of ammonium oxalate solution (AmOx) and varying treatment time in order to test the efficiency of surface and in-depth formation of a protective layer of calcium oxalate (CaOx). Synchrotron-based microanalytical techniques (SR-μXRD with 12.5 μm×7.5 μm (H×V) probe size, SR-μFTIR with 10 μm×10 μm and 8 μm×20 μm probe sizes) and laboratory μFTIR, XRD and SEM have been employed for analysis of the treated samples. Synchrotron-based techniques showed variations in the CaOx distribution along the surface on a micrometer scale. All treatments resulted in the development of a CaOx layer with a maximum thickness of approximately 40 μm. Application by the brushing method with 10 1-min applications with 5-min breaks during one hour showed a development of the calcium oxalate layer equivalent to the poultice treatment taking 10 h. This treatment could be preferred for large marble or limestone surfaces where poultice usage is economically not feasible.  相似文献   

6.
We fabricated several near-infrared Si laser devices (wavelength ~1300 nm) showing continuous-wave oscillation at room temperature by using a phonon-assisted process induced by dressed photons. Their optical resonators were formed of ridge waveguides with a width of 10 μm and a thickness of 2 μm, with two cleaved facets, and the resonator lengths were 250–1000 μm. The oscillation threshold currents of these Si lasers were 50–60 mA. From near-field and far-field images of the optical radiation pattern, we observed the high directivity which is characteristic of a laser beam. Typical values of the threshold current density for laser oscillation, the ratio of powers in the TE polarization and TM polarization during oscillation, the optical output power at a current of 60 mA, and the external differential quantum efficiency were 1.1–2.0 kA/cm2, 8:1, 50 μW, and 1 %, respectively.  相似文献   

7.
Thermal diffusivity of laser micro- and nano-structured regions in polymethylmethacrylate (PMMA) was measured by the temperature wave method with a lateral resolution reduced to ~10 μm using an array of micro-sensors. The volume fraction of laser modified phase was maximized by implementing tightly focused femtosecond laser pulses inside PMMA and maintaining distance of few micrometers between the irradiation spots. The absolute value of thermal diffusivity of PMMA 1.066±0.08×10?7 m2/s was reliably determined with the miniaturized sensors. Regions laser structured by single pulses had no trace of carbonization, almost the same thermal diffusivity as the host PMMA, and a stress-induced birefringence Δn~10?4 modulated with period ~2 μm.  相似文献   

8.
A laser plasma X-ray source of narrow spectral range in the water-window region, is reported using a 50–50 (atomic fraction) mixture of gold-copper mix-Z planar target. Plasma was produced using the second harmonic beam of an Nd:glass laser focused to an intensity ~1013 W/cm2 on the target. The spectrum of the plasma radiation transmitted through a free-standing 0.4 μm aluminium/0.9 μm vanadium X-ray filter foil was measured to lie in the narrow-band of 24–26 Å. This provides a debris-free X-ray dose of 2–3 mJ/sr which can be used for single shot X-ray imaging of live biological samples.  相似文献   

9.
This work reports on a compact sensor for fast and reagent-free point-of-care determination of glucose, lactate and triglycerides in blood serum based on a tunable (1030–1230 cm?1) external-cavity quantum cascade laser (EC-QCL). For simple and robust operation a single beam set-up was designed and only thermoelectric cooling was used for the employed laser and detector. Full computer control of analysis including liquid handling and data analysis facilitated routine measurements. A high optical pathlength (>100 μm) is a prerequisite for robust measurements in clinical practice. Hence, the optimum optical pathlength for transmission measurements in aqueous solution was considered in theory and experiment. The experimentally determined maximum signal-to-noise ratio (SNR) was around 140 μm for the QCL blood sensor and around 50 μm for a standard FT-IR spectrometer employing a liquid nitrogen cooled mercury cadmium telluride (MCT) detector. A single absorption spectrum was used to calculate the analyte concentrations simultaneously by using a partial-least-squares (PLS) regression analysis. Glucose was determined in blood serum with a prediction error (RMSEP) of 6.9 mg/dl and triglycerides with an error of cross-validation (RMSECV) of 17.5 mg/dl in a set of 42 different patients. In spiked serum samples the lactate concentration could be determined with an RMSECV of 8.9 mg/dl.  相似文献   

10.
This paper presents modification of tin sulfide (SnS) thin films by pulsed laser irradiation. Tin sulfide films of 1 μm thickness were prepared using chemical bath deposition (CBD) technique. The chemical bath contained 5 ml acetone, 12 ml of triethanolamine, 8 ml of 1 M thioacetamide, 10 ml of 4 M ammonium hydroxide and 65 ml of distilled water. The chemical bath was kept at a constant temperature of 60 °C for 6 h which resulted in SnS films with 500 nm thickness. By double deposition, the final thickness of SnS thin films obtained was 1 μm. Laser processing was conducted to modify the structure, morphology and physical properties of the SnS thin films. The laser specifications were pulsed Nd:YAG laser with 532 nm wavelength, 300 mJ pulse energy and 10 ns pulse width. Properties of the laser-irradiated SnS thin films were compared with the as-prepared SnS thin films. The changes in structure, morphology, optical and electrical properties of the laser-irradiated SnS thin films were described.  相似文献   

11.
A large-diameter PIN photodiode (400 μm) with antireflection coating optimized for wavelength 650 nm was integrated with an automatic gain control transimpedance amplifier, linear post amplifier and 50Ω linear driver. The presented optical receiver shows a high linearity in receiving multilevel signals. A sensitivity of ?29.5dBm (BER = 10?9) at 200 Mb/s with binary signal was achieved. By using four-level pulse amplitude modulation (4-PAM) a data rate of 400 Mb/s and a sensitivity of ?21.5 dBm (SER = 10?9) was achieved.  相似文献   

12.
An ultra-sensitive photo-acoustic spectrometer using a 10.4 μm broadly tunable mid-IR external cavity quantum cascade laser (EC-QCL) coupled with optical feedback to an optical power buildup cavity with high reflectivity mirrors was developed and tested. A laser optical power buildup factor of 181 was achieved, which corresponds to an intra-cavity power of 9.6 W at a wavelength of 10.4 μm. With a photo-acoustic resonance cell placed inside the cavity this resulted in the noise-equivalent absorption coefficient of 1.9 × 10?10 cm?1 Hz?1/2, and a normalized noise-equivalent absorption of 1.1 × 10?11 cm?1 W Hz?1/2. A novel photo-acoustic signal normalization technique makes the photo-acoustic spectrometer’s response immune to changes and drifts in the EC-QCL excitation power, EC-QCL to cavity coupling efficiency and cavity mirrors aging and contamination. An automatic lock of the EC-QCL to the cavity and optical feedback phase optimization permitted long wavelength scans within the entire EC-QCL spectral tuning range.  相似文献   

13.
A different silicon photonic wire waveguide is proposed, which uses multiple thin cladding layers in order to reduce the index contrast between core and cladding interface. The reduced index contrast in the proposed waveguide has led to reduction in the scattering losses by 37% as compared to silicon wire waveguide for 400 nm × 220 nm waveguide dimension. The proposed waveguide has shown significant reduction in bending losses. It offers the bending loss of 0.0118 dB at the radius of 1 μm and 0.0063 dB for a radius of 2 μm at 1.55 μm wavelength as compared to 0.086 and 0.013 dB at the radius of 1 and 2 μm, respectively, offered by silicon photonic wire waveguide at 1.5 μm wavelength. The use of polymer material as top cladding layer resulted in decreasing the sensitivity of effective index against temperature for the designed waveguide by a factor of 2 as compared to silicon wire waveguide.  相似文献   

14.
Supercontinuum (SC) generation in a standard telecom fiber using 1 ns pulses of a 1,550-nm DFB laser amplified in a cascade of erbium and erbium/ytterbium fiber amplifiers is reported. The SC source operated at 200 kHz repetition rate and delivered up to 2 W of average output power in the band of 1,300–2,500 nm with a diffraction limited beam. For the wavelengths over 1,650 nm, the output power of 1.1 W was recorded. The spectrum was very flat with the flatness of <5 dB in the wavelength interval of 1.6–2.18 μm. To the best of our knowledge, it is the first report on W-level SC generation obtained only in a standard single-mode fiber (SMF-28) with almost the entire spectrum in the eye-safe spectral region (λ > 1.4 μm) permitted by silicate glass transparency.  相似文献   

15.
Resveratrol, a naturally occurring polyphenol found in some fruits and especially in grapes, has been reported to provide diverse health benefits. Resveratrol’s mechanism of action is the subject of many investigations, and some studies using the ratiometric calcium indicator Fura-2 suggest that it modulates cellular calcium responses. In the current study, contradictory cellular calcium responses to resveratrol applied at concentrations exceeding 10 μM were observed during in vitro imaging studies depending on the calcium indicator used, with Fura-2 indicating an increase in intracellular calcium while Fluo-4 and the calcium biosensor YC3.60 indicated no response. When cells loaded with Fura-2 were treated with 100 μM resveratrol, excitation at 340 nm resulted in a large intensity increase at 510 nm, but the expected concurrent decline with 380 nm excitation was not observed. Pre-treatment of cells with the calcium chelator BAPTA-AM did not prevent a rise in the 340/380 ratio when resveratrol was present, but it did prevent an increase in 340/380 when ATP was applied, suggesting that the resveratrol response was an artifact. Cautious data interpretation is recommended from imaging experiments using Fura-2 concurrently with resveratrol in calcium imaging experiments.  相似文献   

16.
Biocompatible, highly interconnected microporous poly(L-lactic acid) (PLLA) foams with nanofibrous structure, containing pores with average diameter below 1 μm and fibers with diameters of 102 nm scale, were prepared through the thermally induced liquid–liquid phase separation (TIPS) method consisting of quenching of the PLLA solution, freeze extraction with ethanol, and vacuum drying. Diverse foam morphologies were obtained by systematically changing parameters involved in the TIPS process, such as polymer concentration, solvent composition, and quenching temperatures. The morphology of different foams was examined by scanning electron microscopy to characterize the pore size and the pore size distribution. The results showed that most porous foams had a nanofibrous structure with interconnected open pores. In the case of using tetrahydrofuran (THF) as solvent, the higher the PLLA concentration, the smaller the average pore diameter and the narrower the pore size distribution. In the case of using the mixed solvents of THF/DOX (1,4-dioxane) with higher than 6/4 volume ratio, there appeared a maximum value of average pore diameter and a widest pore size distribution at 0.09 g/mL PLLA concentration. The average pore diameter of the foams increased with increasing DOX content in the mixed solvent and ranged from 0.2 to 0.9 μm depending on the process parameters. When the DOX content reached 60% by volume, the morphology of the foams contained some large closed pores with diameter ranging from 1 to 10 μm. By decreasing the quenching temperature, the average pore diameter of foams decreased and the pore size distribution became narrower. All the pore size distribution fit F-distribution equations.  相似文献   

17.
We have demonstrated, for the first time to our knowledge, lasing at 1.37 μm in a tellurite-based glass host doped with 0.5 mol.% neodymium: Nd3+:(0.8)TeO2–(0.2)WO3. The gain-switched laser could be operated with 59 μJ threshold pulse energy as well as 5.5% slope efficiency. As high as 6 μJ-pulses with a duration of 1.74 μs were obtained. The pulse repetition rate was 1 kHz. The emission cross section from the threshold analysis turned out to be 1.57×10?20 cm2 at 1370 nm by taking into account excited-state absorption from 4F3/2 to 4G7/2 energy level. Furthermore, the ratio of excited-state absorption to the emission cross section was found out to be 0.78 by using the slope efficiency value.  相似文献   

18.
We report the generation of mid-infrared pulsed radiation between 2.2 and 3 μm range using a singly-resonant optical parametric oscillator (SR-OPO) based on a 40-mm-long crystal of periodically-poled LiNbO3 (PPLN) pumped by mechanically Q-switched pulses from a Nd:YAG laser, obtained by chopping the beam inside the laser resonator over a 1–10 kHz duty cycle. An appreciable reduction in pulse width as well as the number of relaxation oscillation pulses of the Nd:YAG pump laser is observed when the frequency of the Q-switch chopper is increased up to 10 kHz. Sub-nanosecond relaxation oscillation pulses of about 170–210 ns duration are generated under the width of the idler envelope varying from 4.6 to 8.55 μs. The same behavior is observed for the signal wave. A maximum extraction efficiency of 22 % is obtained for the idler, corresponding to 785 mW of output power at 10 kHz. The tuning of the signal and idler beams were performed by temperature variation of the PPLN crystal within 100–200 °C range.  相似文献   

19.
The precursor of plate-like Li3PS4 solid electrolyte (75Li2S?25P2S5, SE (LS)), about 3 μm in length, 500 nm in width, and 100–200 nm in thickness, was successfully prepared from Li2S and P2S5 using ethyl propionate (EP) as a synthetic medium via liquid-phase shaking. Upon evacuating at 170 °C, the precursor decomposed to SE (LS), which exhibited ionic conductivity of about 2.0 × 10?4 Scm?1 at room temperature. SEM observation revealed that the SE (LS) thus obtained had plate-like morphology with dimension of 3 μm in length, 500 nm in width, and 100–200 nm in thickness. Owing to the nanosized SE (LS), an all-solid-state half-cell using composite anode consisting of 90 wt% LiNi1/3Mn1/3Co1/3O2 (NMC) and 10 wt% SE (LS) delivered a high capacity up to 130 mAhg?1(NMC) at the first discharge.  相似文献   

20.
The development and spectroscopic performance evaluation of an ultra-sensitive, mid-IR spectrometer is reported. The laser system is based upon difference-frequency generation (DFG) at ~3.5 μm by mixing a DFB diode laser at 1562 nm and a DFB fiber laser at 1083 nm using a periodically poled LiNbO3 crystal. DFG radiation was coupled to a 100?m optical path length astigmatic Herriott cell. Sensitive and selective spectroscopic detection of formaldehyde was performed with second-harmonic detection using Peltier-cooled HgCdTe detectors. By applying computer lock-ins, dual-beam optical noise subtraction, focus matching, thermal stabilization, active wavelength control, and advanced signal processing a sensitivity corresponding to an absorbance ~1.6×10-7 is achieved for 260 s of averaging.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号