首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Extinction coefficients of gold nanoparticles with core size ranging from approximately 4 to 40 nm were determined by high resolution transmission electron microscopy analysis and UV-vis absorption spectroscopic measurement. Three different types of gold nanoparticles were prepared and studied: citrate-stabilized nanoparticles in five different sizes; oleylamide-protected gold nanoparticles with a core diameter of 8 nm, and a decanethiol-protected nanoparticle with a diameter of around 4 nm. A linear relationship between the logarithms of extinction coefficients and core diameters of gold particles was found independent of the capping ligands on the particle surface and the solvents used to dissolve the nanoparticles. This linear relation may be used as a calibration curve to determine the concentration or average size of an unknown nanoparticle or nanoparticle-biomolecule conjugate sample.  相似文献   

2.
Novel amphiphilic trithiolates possess excellent properties for gold nanoparticle (AuNP) stabilization and functionalization and cannot be replaced by exchange reactions.  相似文献   

3.
Various reagents such as Cl2, Br2, I2, benzoyl peroxide and CH3I add to the dinuclear gold(I) amidinate complex [Au2(2,6-Me2Ph-form)2] to form oxidative-addition gold(II) metal–metal bonded complexes. The gold–gold distance in the dinuclear complex decreases upon oxidative-addition with halogens from 2.7 to 2.5 Å, similar to observations made with dithiolate and ylide ligands. The sodium salt of the guanidinate Hhpp ligand, Hhpp = 1,3,4,6,7,8-hexahydro-2H-pyrimido[1,2-a]pyrimidine reacts with (THT)AuCl in THF or CH2Cl2 to form a Au(II) complex, [Au2(hpp)2Cl2], either by solvent oxidation or disproportionation of the Au(I) to Au(II) and the metal. Density functional theory (DFT) and MP2 calculations on [Au2(hpp)2Cl2] find that the highest occupied molecular orbital (HOMO) is predominately hpp and chlorine-based with some Au–Au δ* character. The lowest unoccupied molecular orbital (LUMO) has metal-to-ligand (M–L) and metal-to-metal (M–M) σ* character (approximately 50% hpp/chlorine, and 50% gold). The charge-transfer character of the deeply colored solutions is observed in all the oxidative-addition products of the dinuclear gold(II) nitrogen ligands. This contrasts with the colors of the gold(II) ylide oxidative-addition products which are pale yellow. The colors of the crystalline gold(II) nitrogen complexes are dark orange to brown. This review will focus on the chemistry of gold(II) with nitrogen ligands and compare this with the well reviewed chemistry of gold(II) thiolate and ylide complexes.  相似文献   

4.
CTAB-stabilized gold nanoparticles were synthesized by applying the seeding-growth approach in order to gain information about the size dependence of the catalytic reduction of p-nitrophenol to p-aminophenol with sodium borohydride. Five different colloidal solutions of stabilized gold nanoparticles have been characterized by TEM, AFM, UV-Vis, SAXS, and DLS for their particle size distributions. Gold nanoparticles (mean sizes: 3.5, 10, 13, 28, 56 nm diameter) were tested for their catalytic efficiency. Kinetic data were acquired by UV-Vis spectroscopy at different temperatures between 25 and 45 °C. By studying the p-nitrophenol to p-aminophenol reaction kinetics we determined the nanoparticle size which is needed to gain the fastest conversion under ambient conditions in the liquid phase. Unexpectedly, CTAB-stabilized gold nanoparticles with a diameter of 13 nm are most efficient.  相似文献   

5.
6.
The design and synthesis of oligomeric ligands based on benzylic thioethers is presented together with their ability to enwrap and stabilize gold nanoparticles with diameters below 2 nm, which become--with increasing length of the oligomer--more monodisperse and stable.  相似文献   

7.
Mixtures of Ln(SC(6)F(5))(3) and Ln(EPh)(3) (E = S, Se) react with elemental E to give chalcogen-rich clusters with fluorinated thiolate ancillary ligands. The structures of both (THF)(6)Yb(4)S(SS)(4)(SC(6)F(5))(2) and (THF)(6)Yb(4)Se(SeSe)(4)(SC(6)F(5))(2) have been established by low-temperature single-crystal X-ray diffraction. Both compounds contain a square array of Yb(III) ions connected by a central mu(4)-E(2-) ligand. The edges of the square Yb(4) array are bridged by four mu(2)(EE) ligands, and two terminal SC(6)F(5) are on the same side of the Ln(4) plane that is capped by the mu(4)-E(2-) ion. Redox inactive (THF)(6)Tm(4)Se(SeSe)(4)(SC(6)F(5))(2) was also prepared to establish the extension of this chemistry to the redox inactive Ln. These clusters are soluble in toluene.  相似文献   

8.
We employed agarose gel preparative electrophoresis to separate gold nanoparticles based on size, shape, and charge. The separating technique was first demonstrated by size separation of 5 nm, 15 nm, and 20 nm spherical gold nanoclusters; and further evidenced through the purification of crude 15 +/- 2.7 nm nanoclusters to nanoclusters that were 15 +/- 0.4 nm. The ability to separate gold nanoparticles by shape was also shown by the purification of a mixture of gold spheres, plates, and long rods.  相似文献   

9.
Qiao Y  Deng J  Jin Y  Chen G  Wang L 《The Analyst》2012,137(7):1663-1668
The G-rich overhang of human telomere tends to form a G-quadruplex structure, and G-quadruplex formation can effectively inhibit telomerase activity in most cancer cells. Therefore, it is important to identify the formation and properties of the G-quadruplex, with the particular aim of selecting G-quadruplex-binding ligands that could potentially lead to the development of anticancer therapeutic agents. With this goal in mind, we report a fluorescence resonance energy transfer (FRET) assay system for the identification of G-quadruplex ligands using DNA-functionalized gold nanoparticles (DNA-GNPs) as the fluorescence quencher and a carboxyfluorescein (FAM)-tagged human telomeric sequence (F-GDNA) as the recognition probe. A thiolated complementary strand of human telomeric DNA (cDNA), which first adheres to the surface of the GNPs and then hybridizes with F-GDNA, results in the fluorescence quenching of F-GDNA by the GNPs. However, fluorescence is restored when single-stranded F-GDNA folds into a G-quadruplex structure upon the binding of quadruplex ligands, leading to the release of F-GDNA from the surface of the GNPs. Combined data from fluorescence measurements and CD spectroscopy indicated that ligands selected by this FRET method could induce GDNA to form a G-quadruplex. Therefore, this FRET G-quadruplex assay is a simple and effective approach to identify quadruplex-binding ligands, and, as such, it promises to provide a solid foundation for the development of novel anticancer therapeutic agents.  相似文献   

10.
Thermolysis of gold(I) thiolate complex, [C14H29(CH3)3N][Au(SC12H25)2], at 180 degrees C for 5 h under an N2 atmosphere produces novel gold nanoparticles passivated by alkyl groups derived from the precursor complex, the TEM image of which shows spherical particles with average diameter 26 nm.  相似文献   

11.
The blocking of zinc enzymes by thiolate-containing inhibitors was modeled by treating TpPh,MeZn-OH with functional thiols. The latter were chosen such that they contain an additional donor function (COOH, COOR, NH2, NHR, OH) in a position favorable for chelation. Of them, mercapto carboxylic acid esters were incorporated as thiolates. The corresponding mercapto carboxylic acids, however, used only their carboxylate function for coordination. Various mercapto amines, mercapto alcohols, and mercaptophenol were exclusively converted to thiolate ligands. The two modes of inhibitor attachment, terminal or chelating, were observed equally frequently. As a rule, they occur as alternatives for similar ligands. In case of 2-mercaptophenol they coexist in the crystalline state and in solution. Hydrogen bonding, both intra- and intermolecular, seems to be a decisive factor determining the inhibitor attachments. Its persistence in solution is underlined by the observation that TpPh,MeZn-hydroxythiophenolates are methylated about 2 orders of magnitude slower than TpPh,MeZn-SPh itself.  相似文献   

12.
Dithiothreitol (DTT)-based displacement is widely utilized for separating ligands from their gold nanoparticle (AuNP) conjugates, a critical step for differentiating and quantifying surface-bound functional ligands and therefore the effective surface density of these species on nanoparticle-based therapeutics and other functional constructs. The underlying assumption is that DTT is smaller and much more reactive toward gold compared with most ligands of interest, and as a result will reactively displace the ligands from surface sites thereby enabling their quantification. In this study, we use complementary dimensional and spectroscopic methods to characterize the efficiency of DTT displacement. Thiolated methoxypolyethylene glycol (SH-PEG) and bovine serum albumin (BSA) were chosen as representative ligands. Results clearly show that (1) DTT does not completely displace bound SH-PEG or BSA from AuNPs, and (2) the displacement efficiency is dependent on the binding affinity between the ligands and the AuNP surface. Additionally, the displacement efficiency for conjugated SH-PEG is moderately dependent on the molecular mass (yielding efficiencies ranging from 60 to 80?% measured by ATR-FTIR and ≈90?% by ES-DMA), indicating that the displacement efficiency for SH-PEG is predominantly determined by the S–Au bond. BSA is particularly difficult to displace with DTT (i.e., the displacement efficiency is nearly zero) when it is in the so-called normal form. The displacement efficiency for BSA improves to 80?% when it undergoes a conformational change to the expanded form through a process of pH change or treatment with a surfactant. An analysis of the three-component system (SH-PEG?+?BSA?+?AuNP) indicates that the presence of SH-PEG decreases the displacement efficiency for BSA, whereas the displacement efficiency for SH-PEG is less impacted by the presence of BSA.
Figure
Schematic displacement of ligands from a AuNP by DTT  相似文献   

13.
We studied the interaction between benzene thiol and thiolate molecules, and gold clusters made of 1 to 3 atoms, by means of ab initio density functional theory in the local density approximation. We find that the thiolate is energetically more stable than the thiol, however the process of detachment of H from the thiol appears to be possibly mediated by the intermediate step of H chemisorption on Au. Cleavage of the S-H bond is accompanied by a 90 degrees rotation of the molecule around the S-Au bond, showing a strong steric specificity. Such a rotation is induced by the relative energy shift of the S atom p orbitals with respect to the benzene pi ring and the Au d orbitals. By analyzing the correlation of the bond energy, bond lengths, and HOMO-LUMO gap with the number of S-Au bonds, we find that the thiolate S atom appears to prefer a low-coordination condition on Au clusters.  相似文献   

14.
Mixing aqueous dispersions of thiocyanate ion coated small (< 3.5 nm diameter) gold nanoparticles and EDTA covered larger (> 22 nm diameter) silver nanoparticles, results in the formation of robust gold encased silver nanoparticles; in contrast to using larger (> 11 nm diameter) gold nanoparticles which forms chained structures.  相似文献   

15.
E. Delgado  E. Hernandez 《Polyhedron》1992,11(24):3135-3138
The reaction of [AuCl(PPh3)] with Pb(SR)2(R = C2H5, C6H5, CH2C6H5, C6F5, C6H2Me3-2,4,6, Pri and But) provides a clean method to obtain complexes of the type [Au(SR)(PPh3)] in good yields. The new compounds have been characterized by IR, 1H, 31P, 19F and 31C NMR. A study by FAB mass spectrometry indicates that an ion-molecule aggregation process takes place.  相似文献   

16.
The size evolution of gold nanoparticles in a millifluidic reactor is investigated using spatially resolved transmission electron microscopy (TEM). The experimental data is supported by numerical simulations, carried out to study the residence-time distribution (RTD) of tracers that have the same properties as Au ions. Size and size distribution of the particles within the channels are influenced by the mixing zones as well as the RTD. However, the Au nanoparticles obtained show a broader size distribution even at the shortest investigated residence time of 3.53 s, indicating that in addition to surface growth reaction kinetics also plays an important role. The comparison of time resolved particle growth within the millifluidic channel with flask-based reactions reveals that the particle size can be controlled better within millifluidic channels. Overall, the results indicate potential opportunities to utilize easy to fabricate millifluidic reactors for the synthesis of nanoparticles, as well as as for carrying out time resolved kinetic studies.  相似文献   

17.
Based on protein folding considerations, a pentapeptide ligand, CALNN, which converts citrate-stabilized gold nanoparticles into extremely stable, water-soluble gold nanoparticles with some chemical properties analogous to those of proteins, has been designed. These peptide-capped gold nanoparticles can be freeze-dried and stored as powders that can be subsequently redissolved to yield stable aqueous dispersions. Filtration, size-exclusion chromatography, ion-exchange chromatography, electrophoresis, and centrifugation can be applied to these particles. The effect of 58 different peptide sequences on the electrolyte-induced aggregation of the nanoparticles was studied. The stabilities conferred by these peptide ligands depended on their length, hydrophobicity, and charge and in some cases resulted in further improved stability compared with CALNN, yielding detailed design criteria for peptide capping ligands. A simple strategy for the introduction of recognition groups is proposed and demonstrated with biotin and Strep-tag II.  相似文献   

18.
The early lanthanide benzenefluorothiolates (Ln(SC(6)F(5))(3); Ln = La, Ce, Pr, Nd, Sm, Gd) react with Hg(SC(6)F(5))(2) in DME to form ionic heterometallic compounds with Ln cations and Hg anions. X-ray diffraction analyses of all compounds reveal an isostructural series with the general formula [(DME)(3)Ln(SC(6)F(5))(2)](2)[Hg(2)(SC(6)F(5))(6)]. In the structures, a fluorothiolate ligand has been extracted from the Ln coordination sphere that is saturated with three neutral DME donor ligands and a dative interaction between one ortho fluorine and the Ln. Distances between Ln and F do not vary simply with Ln ionic radius. There are two Ln cations with charge balanced by a Hg(2)(SC(6)F(5))(6) dianion composed of two distinctly nonideal Hg(II) tetrahedra, all connected through a series of pi-pi interactions that link cations with anions in a one-dimensional array and anions to anions in a more complex 2D network.  相似文献   

19.
A study on optical and electrochemical properties resulting upon interaction of Schiff base ligands with gold nanoparticles is presented. The measurements of the optical absorption and fluorescence properties have provided important information about structure-properties dependence. We show that in function of the isomer structure and its attachment orientation with respect to the metal nanoparticle, their optical properties can be modulated. Nanoparticle assemblies mediated by 3,4-DHS were also obtained based on a control of the interparticle interactions and their electrocatalytic activity toward NADH oxidation was investigated.  相似文献   

20.
A method for the direct one-pot synthesis of amine-stabilized gold nanoparticles using 3-(trimethoxysilylpropyl)diethylenetriamine (TMSP dien) is described. The amine groups of this bifunctional molecule act as a stabilizer for gold nanoparticles as they form by reduction of HAuCl4. Highly stable gold nanoparticles with sizes tunable between 8 and 20 nm can be readily obtained. This method is quite simple to implement and environmentally benign as there is no need to add an external reducing reagent. The incorporated siloxy functionality was subsequently used to form a silica shell around the gold particle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号