首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper reports on a study of the stability of silicon clusters of intermediate size at a high temperature. The temperature dependence of the physicochemical properties of 60- and 73-atom silicon nanoparticles are investigated using the molecular dynamics method. The 73-atom particles have a crystal structure, a random atomic packing, and a packing formed by inserting a 13-atom icosahedron into a 60-atom fullerene. They are surrounded by a ‘coat’ from 60 atoms of hydrogen. The nanoassembled particle at the presence of a hydrogen ‘coat’ has the most stable number (close to four) of Si–Si bonds per atom. The structure and kinetic properties of a hollow single-layer fullerene-structured Si60 cluster are considered in the temperature range 10 K ≤ T ≤ 1760 K. Five series of calculations are conducted, with a simulation of several media inside and outside the Si60 cluster, specifically, the vacuum and interior spaces filled with 30 and 60 hydrogen atoms with and without the exterior hydrogen environment of 60 atoms. Fullerene surrounded by a hydrogen ‘coat’ and containing 60 hydrogen atoms in the interior space has a higher stability. Such clusters have smaller self-diffusion coefficients at high temperatures. The fullerene stabilized with hydrogen is stable to the formation of linear atomic chains up to the temperatures 270–280 K.  相似文献   

2.
Iron impurities on interstitial (Fei) and substitutional sites (FeS) in SiC have been detected by 57Fe emission Mössbauer spectroscopy following implantation of radioactive 57Mn+ parent ions. At temperatures <900 K two Fei species are found, assigned to quasi-tetrahedral interstitial sites surrounded by, respectively, four C (Fei,C) or Si atoms (Fei,Si). Above 900 K, the Fei,Si site is proposed to “transform” into the Fei,C site by a single Fei jump during the lifetime of the Mössbauer state (T 1/2?=?100 ns). Fei,C and substitutional FeS sites are stable up to >1,070 K.  相似文献   

3.
SiC is a highly stable material in bulk. On the other hand, alloys of silicon and carbon at nanoscale length are interesting from both technological as well fundamental view point and are being currently synthesized by various experimental groups (Truong et. al., 2015 [26]). In the present work, we identify a well-known silicon cluster viz., Si10 and dope it sequentially with carbon atoms. The evolution of electronic structure (spin state and the structural properties) on doping, the charge redistribution and structural properties are analyzed. It is interesting to note that the ground state SiC clusters prefer to be in the lowest spin state. Further, it is seen that carbon atoms are the electron rich centres while silicon atoms are electron deficient in every SiC alloy cluster. The carbon–carbon bond lengths in alloy clusters are equivalent to those seen in fullerene molecules. Interestingly, the carbon atoms tend to aggregate together with silicon atoms surrounding them by donating the charge. As a consequence, very few Si–Si bonds are noted with increasing concentrations of C atoms in a SiC alloy. Physical and chemical stability of doped clusters is studied by carrying out finite temperature behaviour and adsorbing O2 molecule on Si9C and Si8C2 clusters, respectively.  相似文献   

4.
Our investigations on substitutional and interstitial Fe in the group IV semiconductors, from 57Fe Mössbauer measurements following 57Mn implantation, have been continued with investigations in 3C-SiC. Mössbauer spectra were collected after implantation and measurement at temperatures from 300 to 905 K. Following comparison with Mössbauer parameters for Fe in Si, diamond and Ge, four Fe species are identified: two due to Fe in tetrahedral interstitial sites surrounded, respectively, by four C atoms (Fei.C) or four Si atoms (Fei,Si) and two to Fe in (or close to) defect free or implantation damaged substitutional sites. An annealing stage at 300–500 K is evident. Above 600 K the Fei,Si fraction decreases markedly, reaching close to zero intensity at 905 K. This is accompanied by a corresponding increase in the Fei,C fraction.  相似文献   

5.
The processes of radiation defect formation in Si with 1 MeV electron irradiation in the temperature range 100–633 K have been investigated. It is established that the generation efficiency of vacancies λV increases with temperature, then starts to saturate at temperatures of 250 K and finally stays constant at T>300 K. It is shown that at high temperatures, the λV dependence can be caused by the additional scattering of “hot” interstitial atoms on acoustical and optical phonons, the numbers of which increase with the temperature. An explanation, based on the creation of quasi-molecule of “hot” interstitial and lattice atoms, is proposed.  相似文献   

6.
We studied in tight-binding approximation involving spν hybridization (ν=2,3), some Si2Cn (n=3 to 42) microclusters. We then investigated, on one hand, fragments of fullerene-like structures (sp2), and on the other hand, nanodiamonds (sp3) of adamantane-type or a 44-atom nanodiamond (with 2 inner atoms which are assumed to play the role of bulk atoms). We compared the stabilities, i.e. the electronic energies of these clusters, according to the various positions of the 2 Si atoms. Results are very different in the two kinds of hybridization. Besides, they can be analysed according to two different points of view: either the clusters are considered as small particles with limited sizes, or they are assumed to be used as models in order to simulate the Si-atom behaviour in very larger systems. In sp2 hybridization (fullerene-like geometries), the most stable isomer is always encountered when the 2 Si atoms build a Si2 group, and this result holds for both viewpoints quoted above. Conversely, in sp3 hybridization (nanodiamonds), since Si atoms “prefer” sites having the minimum connectivity, they are never found in adjacent sites. We see that with a simple and fast computational method we can explain an experimental fact which is very interesting such as the relative position of two heteroatoms in the cluster. This enhances the generality and the fecondity in the tight binding approximation due essentially to the link between this model and the graph theory, link based on the topology of the clusters.  相似文献   

7.
Implantation of any ions at a sufficiently high dose and energy (E) into single-crystalline Si leads to the creation of amorphous Si (aSi), with damages peaking near the projected range (R p) of implanted species. Enhanced hydrostatic pressure (HP) at a high temperature (HT) influences the recrystallization of aSi. The structure of self-implanted Czochralski silicon (Si+ dose, D=2×1016 cm?2, E=150 keV, R p=0.22 μm) processed for 5 h at 1400 or 1520 K under HPs up to 1.45 GPa was investigated by X-ray, secondary ion mass spectrometry and photoluminescence methods. The implantation of Si produces vacancies (V) and self-interstitials (Sii). Vacancies and Siis form complex defects at HT–HP, also with contaminants (e.g. oxygen, always present in Czochralski silicon). The mobility and recombination of V and Sii as well as the kinetics of recrystallization are affected by HP, thus processing at HT–HP affects the recovery of aSi.  相似文献   

8.
A computational (quantum-chemical) experiment has been performed on constructing a silicon nanofiber by gas-phase deposition. A model of two-step polymerization has been proposed in which a fullerene Si60 molecule serves as the main structural unit. The formation of oligomers of the molecule containing from three to eight molecular units explains the discrete values of the fiber width observed experimentally. The formation of a “rouleau” of oligomers leads to fiber growth in terms of length. It is shown that both steps are favorable in energy with the decisive superiority of a high-spin state, which poses the question of considering silicon nanofibers to be molecular magnets.  相似文献   

9.
Density functional theory (DFT) calculations are performed to investigate the electronic features of the structures of fluorinated polysilanes SinFn (n=4, 6, 8, 10, 12, 20, 24, 28, 30, 32, 36, 50, and 60). Among all of these fluorinated polysilanes, Si20F20 has the highest binding energy and, thus, stability. The binding energy then shows a very slow (monotonically) decrease as the size of the fluorinated silicon fullerene n≥20 increases which can be related to an increase in fluorine–fluorine repulsion. Following an irregular pattern, the HOMO–LUMO energy gap strongly depends on the size of the cage. On the other hand, 29Si CS parameters detect equivalent electronic environment for silicon atoms within SinHn polysilanes with n≤20 while 29Si NMR pattern indicates a few separated peaks for SinHn polysilanes with n≥20. Seeking correlation between these peaks and local structures around silicon sites, Siα, Siβ, Siγ observed in these models shows that δiso(Siγ)<δiso(Siβ) <δiso(Siα). Obtaining similar values (458.8–478.7 ppm) of 19F calculated chemical shieldings for all the fluorinated polysilanes means the same tendency of the silicon atoms on the surfaces of all cages for contribution to chemical bonding with fluorine atoms.  相似文献   

10.
We have applied density functional theory (DFT) calculations to study the structures, stabilities, electronic and magnetic properties of mono and multiply oxygenated Si60H60 fullerenes (Si60H60–2nOn, n = 1, 3, 6, 9, 10, 12, 18, 20, 21, 27 and 30). DFT results show that rearrangement between the closed [6,6] and [5,6] isomers of Si60H58O follows a two-step pathway involving an intermediate and two transition states. Preserving the C3 symmetry in the cage structure, extra epoxidation of Si60H60 has been accomplished. Based on our results, formation energies per oxygen atom for the multiple additions of oxygen atoms on Si60H60 cage are positive (endothermic character), and increase with the increasing of the number of oxygen atoms. In general, the oxygenation of Si60H60 cage leads to an increase in the electrophilicity of the Si60H60–2nOn oxides. The oxygenation of Si–Si bonds not only introduces a substantial broadening of the NMR pattern but also yield individual peaks, indicating different electrostatic environments of silicon nuclei in the Si60H60–2nOn oxides.  相似文献   

11.
In the present study, we have observed silicon–carbon cluster ions (SinCm+) emitted from a Si(1 0 0) surface under irradiation of reactive molecular ions, such as C6F5+, at 4 keV, 1 μA/cm2. The cluster Sin up to n=8 and “binary” cluster SinC up to n=6 are clearly detected for the C6F5+ irradiation. Stoichiometric clusters (SinCm n=m) except SiC+ and other binary clusters which contain more than two carbon atoms (m≥2) were scarcely observed. The observed clusters show a yield alternation between odd and even n. The intensities of Si4, Si6 and Si5C clusters are relatively higher than those of the neighboring clusters. In the case of Si5C, it is considered that doped carbon atom acts as silicon atom. These results imply that the recombination through the nascent cluster emission and subsequent decomposition takes place during the cluster formation.  相似文献   

12.
A two-stage model of the capture of electrons and holes in traps in amorphous silicon nitride Si3N4 has been proposed. The electronic structure of a “Si–Si bond” intrinsic defect in Si3N4 has been calculated in the tight-binding approximation without fitting parameters. The properties of the Si–Si bond such as a giant cross section for capture of electrons and holes and a giant lifetime of trapped carriers have been explained. It has been shown that the Si–Si bond in the neutral state gives shallow levels near the bottom of the conduction band and the top of the valence band, which have a large cross section for capture. The capture of an electron or a hole on this bond is accompanied by the shift of shallow levels by 1.4–1.5 eV to the band gap owing to the polaron effect and a change in the localization region of valence electrons of atoms of the Si–Si bond. The calculations have been proposed with a new method for parameterizing the matrix elements of the tightbinding Hamiltonian taking into account a change in the localization region of valence electrons of an isolated atom incorporated into a solid.  相似文献   

13.
Fullerene-like silicon nanostructures with twenty and twenty-four carbon atoms on the surface of the Si60 cage by substitution, as well as inside the cage at various orientations have been studied within the generalized gradient approximation to density functional theory. Full geometry optimizations have been performed without any symmetry constraints using the Gaussian 03 suite of programs and the LANL2DZ basis set. Thus, for the silicon atom, the Hay-Wadt pseudopotential with the associated basis set is used for the core electrons and the valence electrons, respectively. For the carbon atom, the Dunning/Huzinaga double zeta basis set is employed. Electronic and geometric properties of these nanostructures are presented and discussed in detail. Optimized silicon-carbon fullerene like nanostructures are found to have increased stability compared to the bare Si60 cage and the stability depends on the number and the orientation of carbon atoms, as well as on the nature of silicon-carbon and carbon-carbon bonding.  相似文献   

14.
Raman spectra acquired from Si x Ge1−x -nanocrystal-embedded SiO2 films show dependence of the Si–Si optical phonon frequency on Si content. The frequency upshifts, and peak intensity increases as the silicon concentration increases. For a given Si content, the frequency remains unchanged with annealing temperature. Spectral analysis and density functional theory calculation reveal that the optical Si–Si phonon is related to the formation of localized Si clusters surrounded by Si/Ge atomic layers in the Si x Ge1−x nanocrystals and the intensity enhancement arises from the larger cluster size. The synergetic effect of surface tensile stress and phonon confinement determines the Si–Si optical phonon behavior.  相似文献   

15.
We present results of scanning tunneling spectroscopy (STS) measurements of hydrogen-saturated silicon clusters islands formed on Si(111)-( 7×7) surfaces. Nanometer-size islands of Si6H12 with a height of 0.2-4 nm were assembled with a scanning tunneling microscope (STM) using a tip-to-sample voltage larger than 3 V. STS spectra of Si6H12 cluster islands show characteristic peaks originating in resonance tunneling through discrete states of the clusters. The peak positions change little with island height, while the peak width shows a tendency of narrowing for the tall islands. The peak narrowing is interpreted as increase of lifetime of electron trapped at the cluster states. The lifetime was as short as 10-13 s resulting from interaction with the dangling bonds of surface atoms, which prevents charge accumulation at the cluster islands. Received 30 November 2000  相似文献   

16.
The early stages of iron silicide formation in the Fe/SiO x /Si(100) ternary system during solid-phase epitaxy are studied by high-resolution (~100 meV) photoelectron spectroscopy using synchrotron radiation. The spectra of core and valence electrons taken after a number of isochronous heat treatments of the samples at 750°C are analyzed. It is found that the solid-phase reaction between Fe and Si atoms proceeds in the vicinity of the SiO x /Si interface, which metal atoms reach when deposited on the sample surface at room temperature. Iron silicide starts forming at 60°C. Solid-phase synthesis is shown to proceed in two stages: the formation of the metastable FeSi interfacial phase with a CsCl-like structure and the formation of the stable β-FeSi2 phase. During annealing, structural modification of the silicon oxide occurs, which shows up in the growth of the Si+4 peaks and attenuation of the Si+2 peaks.  相似文献   

17.
The atomic order in low-carbon steel strained by screw extrusion making the microstructure finer and changing the phase ratio in the material is studied by X-ray diffraction analysis. The steel is found to consist of multiscale structural fractions: a finely crystalline (300–600 Å) α-Fe matrix, nanodimensional (180–250 Å) Fe3C and Fe3Si or Fe5Si3 phases, and a fraction with randomly arranged atoms. A second-order order-disorder phase transition is revealed with order prevailing in the longitudinal (‖) section of the samples and disorder prevailing in their cross (⊥) section. Sets of “extended” and “compressed” planes are found to coexist in the structure for the first time, with extended planes prevailing in the (‖) section and compressed planes prevailing in the (⊥) one.  相似文献   

18.
P Laty  J.C Joud  P Desre 《Surface science》1976,60(1):109-124
The statistical approach developed uses the concept of “surrounded atoms”. The strong chemical interactions existing between the atoms of the liquid alloys studied are expressed, to a great extent, by the energy of stabilization of “privileged surrounded atoms” (PSA) of the mixture. The model permits to show the effects of these PSA on the surface properties (particularly surface tension) of three systems: AlCu, FeSi and NiSi.  相似文献   

19.
Electronic structures of chemisorption on Si(111)/H,C1 are investigated by the first principle DV-Xα cluster method. The calculations are carried out for chemisorption on different sites, based on the Si13H15 cluster, and the effect of surface vacancy and buckling on the electronic structure is examined in detail. The present calculation shows that the Si13H15 surface cluster reproduces very well the more sophisticated band calculation for the Si(111) surface. It is concluded that the vacancy model with chemisorbed atoms at appropriate sites is reasonable to interpret the observed UPS of Si(111) 7 × 7/H,C1. The charge transfer between the substrate atom and the adatom depends strongly both on the chemisorption sites and on the electronegativitv difference.  相似文献   

20.
First-principles studies are performed on Au12W@Si60 by using projector-augmented wave (PAW) method and generalized gradient approximation for the exchange-correlation energy. The geometry, electronic structure, orbital hybridization, and charge transfer are discussed. It is found that the magic Au12W cluster interacts strongly with Si, thus stabilizes Si60 cage structure. Meanwhile the metal cluster is dissociated when encapsulated in the Si60 cage, and charges are transferred from the Si cage to the metal atoms.Received: 30 December 2003, Published online: 17 February 2004PACS: 61.48. + c Fullerenes and fullerene-related materials - 36.40.Cg Electronic and magnetic properties of clusters - 61.46. + w Nanoscale materials: clusters, nanoparticles, nanotubes, and nanocrystals - 71.20.Tx Fullerenes and related materials; intercalation compounds  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号