首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present a morphological, structural, and magnetic characterization of Co nanoparticles (mean diameter of 10.3 ± 1.8 nm) grown using a gas aggregation source and embedded in a silicon oxide matrix by sequential deposition of nanoparticles and silicon oxide. We show that the Co nanoparticles ??soft-land?? on the substrates and suffer a moderate oxidation in contact with the silicon oxide. Despite this moderate oxidation, it is found that, at room temperature, the magnetic volume of the resulting nanoparticles is below the superparamagnetic limit. The results presented in this article are compatible with the presence of an assembly of magnetically independent particles that also display a moderate exchange bias at low temperature.  相似文献   

2.
Hyperthermic CoFe2O4 nanoparticle (CFO NP)/polymer hybrids were synthesized by hydrolysis–condensation from a complex of Co and Fe possessing methacrylate ligands. Single-crystal analysis revealed that the complex consisted of two Co and four Fe metal atoms coordinated by methacrylate and 2-methoxyethoxy groups. The complex was copolymerized with 2-hydroxyethyl methacrylate (HEMA) and the resulting copolymer was then hydrolyzed to form a CFO NP/copolymer of poly(methacrylate) and poly(2-hydroxyethyl methacrylate) hybrid. Copolymerization with HEMA enhanced the stability of the hybrid in water. The size and magnetic properties of CFO in the hybrid were controlled by adjusting the hydrolysis conditions. Moreover, the hybrid generated heat under an alternating current magnetic field; its exothermal properties depended on the magnetic properties of the hybrid, the strength of the applied field, and the CFO NP content in the agar phantom matrix.  相似文献   

3.
The magnetization properties of a ferromagnet-semiconductor Co/CdMgTe/CdTe quantum well hybrid structure are investigated by several techniques. Exploiting the proximity effect between acceptor bound holes and magnetic ions we detect the magnetization curves by measuring the circular polarization of photoluminescence in an out-of-plane magnetic field. We show that magnetization originates from interfacial ferromagnet on Co-CdMgTe interface and the proximity effect is caused by magnetization of interfacial Co-CdMgTe ferromagnetic layer whose magnetic properties are very different from Co.  相似文献   

4.
我们在真空离子束溅射设备中制备了Co-SiO2颗粒膜,其结构和磁性分别利用透射电子显微术(TEM)和铁磁共振(FMR)来研究。TEM分析表明Co纳米颗粒相互独立地分布在SiO2介质中,且尺寸分布非常窄。室温转角FMR实验显示薄膜具有单轴各向异性,变温FMR实验被用来研究在100-300K温度范围内的颗粒间相互作用强度随温度变化的关系(我们利用一理论模型计算了颗粒集合体中的铁磁部分所占比例和超顺磁部分所占比例)。我们发现颗粒间相互作用强度除了与温度有关之外,还与Co颗粒的尺寸直接相关。  相似文献   

5.
We present the study of Co/organic semiconductor (OS) stacks both from the morphological and magnetic point of view. Co has been successfully used up to now as top contact of hybrid vertical devices. While the properties of Co grown on amorphous layers are well established, its deposition on soft materials presents critical aspects such as interfacial damage that affects its electrical and magnetic properties. In this work we focus on the influence of the morphology of the organic underlayer in the magnetic behavior of a Co thin film: tris(8-hydroxyquinoline) aluminum (Alq3) grown in different conditions by molecular beam evaporation have been considered. A further considered aspect is the effect of the presence of a thin oxide barrier (Al2O3) on the Co magnetic properties.  相似文献   

6.
We report on the magnetic properties of two-dimensional Co nanoparticles arranged in macroscopically phase-coherent superlattices created by self-assembly on Au(788). Our particles have a density of 26 Tera/in2 (1 Tera=10(12)), are monodomain, and have uniaxial out-of-plane anisotropy. The distribution of the magnetic anisotropy energies has a half width at half maximum of 17%, a factor of 2 more narrow than the best results reported for superlattices of three-dimensional nanoparticles. Our data show the absence of magnetic interactions between the particles. Co/Au(788) thus constitutes an ideal model system to explore the ultimate density limit of magnetic recording.  相似文献   

7.
Cobalt/gold (Co/Au) bimetallic nanoparticles are prepared by chemically reducing gold (III) chloride to gold in the presence of pre-synthesized Co nanoparticles. Transmission electron microscopy (TEM), ultraviolet-visible (UV-vis) absorption spectrometry, and a superconducting quantum interference device (SQUID) magnetometer have been used to characterize as-prepared bimetallic nanoparticles. Our findings demonstrate Au not only grows onto Co nanoparticles, forming a surface coating, but also diffuses into Co nanoparticles. The introduction of Au alters the crystalline structure of Co nanoparticles and changes their magnetic properties. Dodecanethiols induce a reorganization of as-prepared Co/Au bimetallic nanoparticles.  相似文献   

8.
Metal and metal oxide nanoparticles exhibit unique properties in regard to sorption behaviors, magnetic activity, chemical reduction, ligand sequestration among others. To this end, attempts are being continuously made to take advantage of them in multitude of applications including separation, catalysis, environmental remediation, sensing, biomedical applications and others. However, metal and metal oxide nanoparticles lack chemical stability and mechanical strength. They exhibit extremely high pressure drop or head loss in fixed-bed column operation and are not suitable for any flow-through systems. Also, nanoparticles tend to aggregate; this phenomenon reduces their high surface area to volume ratio and subsequently reduces effectiveness. By appropriately dispersing metal and metal oxide nanoparticles into synthetic and naturally occurring polymers, many of the shortcomings can be overcome without compromising the parent properties of the nanoparticles. Furthermore, the appropriate choice of the polymer host with specific functional groups may even lead to the enhancement of the properties of nanoparticles. The synthesis of hybrid materials involves two broad pathways: dispersing the nanoparticles (i) within pre-formed or commercially available polymers; and (ii) during the polymerization process. This review presents a broad coverage of nanoparticles and polymeric/biopolymeric host materials and the resulting properties of the hybrid composites. In addition, the review discusses the role of the Donnan membrane effect exerted by the host functionalized polymer in harnessing the desirable properties of metal and metal oxide nanoparticles for intended applications.  相似文献   

9.
Results of structural, magnetic and transport properties of magnetic Co/SiO2 discontinuous multi-layers produced by sequential deposition are presented. Transmission electron microscopy (TEM) images show that the samples that are close to metal–insulation transition are composed by a connected network of metallic paths, and display an enhanced Hall Effect. The granular samples are composed by an almost periodic array of Co nanoparticles, and after annealing these samples show a clear evolution in the nanostructure, with increasing average Co grain sizes and decreasing size dispersion. Relationships between the nanostructure and magnetotransport properties are discussed and compared with previous results obtained in cosputtered films.  相似文献   

10.
We present magnetic properties of hollow and solid CoFe(2)O(4) nanoparticles that were obtained by annealing of Co(33)Fe(67)/CoFe(2)O(4) (core/shell) nanoparticles. Hollow nanoparticles were polycrystalline whereas the solid nanoparticles were mostly single crystal. Electronic structure studies were performed by photoemission which revealed that particles with hollow morphology have a higher degree of inversion compared to solid nanoparticles and the bulk counterpart. Electronic structure and the magnetic measurements show that particles have uncompensated spins. Quantitative comparison of saturation magnetization (M(S )), assuming bulk Néel type spin structure with cationic distribution, calculated from quantitative XPS analysis, is presented. The thickness of uncompensated spins is calculated to be significantly large for particles with hollow morphology compared to solid nanoparticles. Both morphologies show a lack of saturation up to 7 T. Moreover magnetic irreversibility exists up to 7 T of cooling fields for the entire temperature range (10-300 K). These effects are due to the large bulk anisotropy constant of CoFe(2)O(4) which is the highest among the cubic spinel ferrites. The effect of the uncompensated spins for hollow nanoparticles was investigated by cooling the sample in large fields of up to 9 T. The magnitude of horizontal shift resulting from the unidirectional anisotropy was more than three times larger than that of solid nanoparticles. As an indication signature of uncompensated spin structure, 11% vertical shift for hollow nanoparticles is observed, whereas solid nanoparticles do not show a similar shift. Deconvolution of the hysteresis response recorded at 300 K reveals the presence of a significant paramagnetic component for particles with hollow morphology which further confirms enhanced spin disorder.  相似文献   

11.
We present a study of the magnetic properties of Co nanoparticles having a combination of both spherical and disk shapes. The hcp Co nanospheres with an average diameter of 11 nm and nanodiscs of dimensions ∼2.5×15 nm2 were prepared by thermal decomposition of di-cobalt octacarbonyl in the presence of an amine surfactant. The as-synthesized nanoparticles were oxidized to grow an antiferromagnetic layer. High resolution transmission electron microscopy showed the presence of a ferromagnet/antiferromagnet (Co/CoO) interface with a 2.2-nm thick CoO shell on the spherical nanoparticles and 0.5 nm thick on nanodiscs. We report the temperature and field dependent DC magnetization, frequency, field, and temperature dependent AC susceptibility, and the radio frequency transverse susceptibility. A low temperature paramagnetic behavior was observed in the DC magnetization at high fields and is assigned to defects in the CoO shell that are not coupled to the antiferromagnetic lattice. Our results support the existence of a low temperature frozen, disordered magnetic state, characterized by a strong exchange coupling between the structurally disordered, spin-glass CoO shell and Co core.  相似文献   

12.
The magnetic response of nanometer sized Co nanoparticles (NP) prepared using reverse micelle solutions are presented. The use of complementary structural and morphological probes (like transmission electron microscopy, high resolution electron microscopy, X-ray absorption spectroscopy) allowed to relate the magnetic properties to the size, morphology, composition and atomic structure of the nanoparticles. All data agree on the presence of a core-shell structure of NPs made of a metallic Co core surrounded by a thin Co-oxide layer. The core-shell microstructure of NPs affects its magnetic response mainly raising the anisotropy constant.  相似文献   

13.
Polycrystalline samples of(Zn, Co) co-doped SnO2 nanoparticles were prepared using a co-precipitation method. The influence of(Zn, Co) co-doping on electrical, dielectric, and magnetic properties was studied. All of the(Zn, Co) co-doped SnO2 powder samples have the same tetragonal structure of SnO2. A decrease in the dielectric constant was observed with the increase of Co doping concentration. It was found that the dielectric constant and dielectric loss values decrease, while AC electrical conductivity increases with doping concentration and frequency. Magnetization measurements revealed that the Co doping SnO2 samples exhibits room temperature ferromagnetism. Our results illustrate that(Zn, Co) co-doped SnO2 nanoparticles have an excellent dielectric, magnetic properties, and high electrical conductivity than those reported previously, indicating that these(Zn, Co) co-doped SnO2 materials can be used in the field of the ultrahigh dielectric material, high frequency device, and spintronics.  相似文献   

14.
This work reports the preparation of hybrid nanoparticles with magnetic and fluorescent properties. The material is based on magnetite nanoparticles (NPs) coated with fluorophore methylene blue (MB). The synthesis of a multifunctional material with magnetic and fluorescent features is carried out in a single step by electrooxidation. The effect of the presence of methylene blue in the synthetic medium is discussed. The presence of MB polymer at the NP surface is demonstrated with visible UV, infrared and Raman spectroscopy. The NPs morphology, structure and size are determined by transmission electron microscopy (TEM) and X-ray diffraction. The magnetic properties are measured with a vibrating sample magnetometer (VMS). In overall, the results show that magnetite NPs generated electrochemically in the presence of MB present a core/shell structure, being the NP at the core surrounded by methylene blue polymer, leading to a nanocomposite or hybrid material.  相似文献   

15.
We report on the magnetic behaviour of films of Fe nanoparticles deposited from the gas phase with sizes in the range 2–3 nm embedded in Ag and Co matrices and Co nanoparticles of the same size embedded in Ag matrices. Magnetometry measurements, using a VSM, of very low volume fraction (1–2%) assemblies of Fe and Co in Ag show perfect superparamagnetism and enable us to confirm that the size distribution of the particles in the matrix is the same as that of the free particles prior to deposition. The hysteresis loops at 2 K, which is below the blocking temperature, show that the particles have a uniaxial anisotropy that is randomly oriented in three dimensions with the Co nanoparticles having a much higher anisotropy than the Fe particles. The soft magnetic behaviour of pure Fe and Co nanoparticle films with no matrix is well described by a random anisotropy model and is consistent with the formation of a correlated super-spin glass (CSSG) characteristic of amorphous materials. The Co nanoparticle films appear to have a lower random anisotropy than the Fe ones in contrast to the behaviour observed for the isolated particles. Films of Fe nanoparticles embedded in Co matrices, whose saturation magnetization exceeds the Slater–Pauling curve, also show magnetic behaviour consistent with a CSSG. At high volume fractions, the films of Fe nanoparticles embedded in Co matrices behave almost identically to films of pure Co nanoparticles.  相似文献   

16.
The structural and magnetic properties of TM_(13 )and TM_(13)@Au_(32 )clusters(TM=Mn,Co)are studied by firstprinciples calculations.We find that the Au_(32 )cluster can tune not only the magnetic moment but also the magnetic coupling properties between the TM atoms of the TM cluster.The Au_(32 )cluster can increase the net magnetic moment of Mn_(13 )clusters while reducing that of Co_(13 )clusters.The interaction between Au and Mn atoms induces more Mn atoms to form spin parallel coupling,resulting in an increase of the total magnetic moment of Mn_(13 )clusters,while for the Co_(13 )clusters,the interaction between Au and Co atoms does not change the magnetic coupling states between the Co atoms,but reduces the magnetic moment of the Co atoms,leading to a decrease of the total magnetic moment of this system.Our findings indicate that the encapsulation of Au_(32 )clusters can not only raise the chemical stability of TM clusters,but also can tune their magnetic coupling properties and magnetic moment,which enables such systems to be widely applied in fields of spintronics and medical science.  相似文献   

17.
A series of Co-doped SnO2 nanoparticles have been synthesized by the co-precipitation route. Different amounts of surfactant have been used in order to study the effect of surfactants (CTAB) on the magnetic and optical properties. Structural analyses reveal that Co dopants are substituted into rutile SnO2 nanoparticles without forming any secondary phase. The increase of the surfactant promotes the adsorption of organic molecules on the surfaces of nanoparticles. Meanwhile, both the ferromagnetism and the orange emission drop progressively. The dependence of ferromagnetic properties on the surfactant concentration could be explained based on the bound magnetic polaron, where the carriers are provided by oxygen vacancies. XANES spectra reveal that the electrons transfer from Co 3d bands to the surfactant ions. Such electron-transfer process suppresses the formation of oxygen vacancies and leads to the decline of the ferromagnetism and optical emission.  相似文献   

18.
The structure and some properties of hybrid injection‐molded polypropylene (PP) composites, containing carbon fibers (CF) and nanoparticles, were studied. The effects of nanoparticle type, size, and content were investigated. All studied hybrid composites exhibited unexpected fiber disorientation (oriented even transverse to the melt‐flow direction), disappearance of the typical skin/core structure in fiber‐containing moldings and, surprisingly, very low fiber length. Different types of nanoparticles resulted in different levels of fiber breakage: the shortest fibers were observed in composites containing nano‐TiO2 and longer ones in composites containing nano‐Al2O3 and carbon black (CB). Moreover, smaller nanoparticles resulted in higher levels of fiber length attrition. Electrical conductivity of the composites was found to drop drastically upon incorporation of several volume percents of insulating nanoparticles, although the content of CF when by itself was above the percolation threshold. Tensile modulus values, in the melt‐flow direction, of hybrid composites were also inferior to those of the only–CF‐reinforced composites, while rheological properties were dominated by CF, being practically not affected by the presence of nanoparticles. Based on the present and previous studies, the effect of nanoparticles on fiber orientation and their length attrition in hybrid injection moldings could be generalized to systems containing combinations of brittle fibers and hard nanoparticles.  相似文献   

19.
The role of size, structure and chemical order on the magnetic moments and magnetic anisotropy energy (MAE) of CoRh nanoparticles are studied in the framework of a self-consistent real-space tight-binding method. Our results show that a Rh core in a geometry having a large surface/volume ratio and with Co–Rh mixing at the interface is the most likely chemical arrangement. A local analysis reveals that the orbital and spin moments at the Co–Rh interface are largely responsible for the increase of the magnetic moments and magnetic anisotropy. Moreover, the local moments induced at the Rh atoms, which amount to about 20% of the moment per Co atom [ μRh = (0.2–0.3) μB] and the orbital moments of Co atoms play a crucial role on the interpretation of experiment. The results are discussed in the context of the interplay between chemical order and magnetic properties.  相似文献   

20.
Normally, CoFe2O4 has been known as ferromagnetic ferrite with a quite large magnetic moment. However, since we aim to inject the particles into the human body, we are also interested in ZnFe2O4 because in the human body, Fe and Zn exist, so that adding ZnFe2O4 is safer. In both cases, the nanoparticles are coated by silica in order to get rid of toxicity. Our main purpose is to test whether these nanoparticles affect the contractile function of heart cells. Our results on rat’s heart cells have shown that both Zn and Co ferrites improved the contractility of heart cells. Notably, although both nanoparticles increased contraction and delayed relaxation, Co ferrites induced a greater contraction but with a slower relaxation. We can theoretically argue that the magnetization effects of the quantum dots have a considerable effect on the pulsating properties of the heart cells. Through this effect, the locally applied magnetic field is able to induce as well as turn on/off various regular beating patterns, thus, resetting the heart beatings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号