首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
提出了一种基于金纳米棒自组装的促进和抑制检测汞离子的方法.在合适的实验条件下,当金纳米棒胶体溶液中加入还原性谷胱甘肽(GSH)时,金纳米棒因Au-S键的形成,通过氢键和静电相互作用发生头对头(End to End)的自组装.当以上体系中加入汞离子时,这种头对头的自组装会被打破,金纳米棒重新呈分散状态.这种方法的最低检测限为1nmol/L,检测范围为1nmol/L-100μmol/L.该汞离子检测方法特异性强、灵敏度高且检测的浓度范围比较大,有望广泛用于水环境中汞离子的检测.  相似文献   

2.
We report a new structure for broadband antireflection coating by dip-coating technique, which has minimal cost and is compatible with large-scale manufacturing. The coatings are prepared by depositing SiO 2 sol-gel film on a glass substrate, subsequently depositing SiO 2 single-layer particle coating through electrostatic attraction, and depositing a final very thin SiO 2 sol-gel film to improve the mechanical strength of the whole coating structure. The refractive index of the structure changes gradually from the top to the substrate. The transmittance of a glass substrate has been experimentally found to be improved in the spectral range of 400 1 400 nm and in the incidence angle range from 0 to at least 45 . The mechanical strength is immensely improved because of the additional thin SiO 2 sol-gel layer. The surface texture can be applied to the substrates of different materials and shapes as an add-on coating.  相似文献   

3.
Flower-like morphologies of gold nanostructures were obtained via chemical method by controlling molar concentration ratio of reducing agent and precursor. Chloroauric acid was used as a metal precursor while tri-sodium citrate as the reducing agent. These flower-like structures were characterized by UV-vis spectroscopy, Scanning Electron Microscopy (SEM) and X-ray Diffraction (XRD) techniques. The basic crystallite size calculated via XRD measurement was found to be ∼10 nm and remain unaffected by the different concentration ratios. The coating of these structures was made over clean glass substrate and analyzed for wettability by measuring their water contact angles. Our analysis indicates that the coatings of hierarchical flower-like structures of gold are able to provide ultra hydrophilic properties to glass substrate.  相似文献   

4.
A surface-enhanced Raman scattering sensor is developed by etching polymer optical fiber and coating with gold nanorods. The SERS sensing experiments are demonstrated with the analyte molecules of rhodamine 6G (R6G) at 514.5 nm laser excitation. The results show that a strong fiber Raman background scattering overwhelm the R6G molecule Raman signal in common optrod configuration, but a distinct R6G SERS spectrum with 9 order magnitude enhancement can be observed while directly focusing light on the probe. Further modeling indicates the enhancement is attributed to both nanorods local field and their coupling.  相似文献   

5.
This work compares the self-cleaning properties of experimental TiO2 and TiO2-Ag coatings on float glass with a commercial self-cleaning glass. In the experimental surfaces, TiO2 coating was applied to float glass via the sol-gel route, while TiO2-Ag coating was applied by the liquid flame spray method, which deposits TiO2-Ag composite nanoparticles on the surface. The effect of the coatings on the surface wettability and the activation time for achieving hydrophilicity was studied through water contact angle as a function of exposure time to UV light. The surface morphology was investigated by using scanning electron microscopy (SEM) and confocal optical microscopy. The photocatalytic activity of the coatings was examined with methylene blue and stearic acid degradation tests. Finally, the soil attachment to the surfaces was tested with a sebum-based model soil. The sol-gel TiO2 coating became superhydrophilic within a few hours, while the activation time needed for the commercial titania coated glass was several days. The surface with the TiO2-Ag nanoparticles did not show any marked changes in the water contact angle. The commercial titania coated and the sol-gel TiO2 surfaces showed self-cleaning properties and clearly lower attachment of soil than the uncoated and TiO2-Ag coated surfaces. The difference in the interaction of the surfaces with the organic contaminants was assumed to depend mainly on differences in the thickness of the coatings.  相似文献   

6.
We investigated the plasmonic resonance enhanced two-photon photopolymerization (PETPP) using the isolated chemical synthesized gold nanorods for fabrication of polymer/metal nanocomposites. The isolated gold nanorods with the plasmonic resonance band around 750 nm covered by photoresist were irradiated by a femtosecond laser with the wavelength of 780 nm. The PETPP trigged by the plasmonic resonance enhancement of gold nanorods was localized only in the distance smaller than 30 nm from the surface of gold nanorods, which matched the distance of plasmonic resonant enhanced field of the gold nanorod. The shapes of obtained polymer/gold nanocomposites were changed from the “dumbbell” to the “ellipsoid” with the increase of laser irradiating intensity used for PETPP. This study would provide a potential method for fabricating the plasmonic nanomaterials and nanostructures of polymer/metal nanocomposites, which could be expected to be applied in the emerging fields such as nanophotonics, nanobiosensor, nanolithography.  相似文献   

7.
Jiang H  Yu K  Wang Y 《Optics letters》2007,32(5):575-577
Introducing nanosized pores can greatly reduce the refractive index of thin films. Thus antireflective structures can be fabricated by controlled assembly of nanoparticles to form a nanoporous layer. We report what we believe to be the first example of preparing antireflective coatings on glass slides by spin casting polymer latex. Optical transmittances at 550 nm of 95.7% for a single-sided coating and 99.5% for a double-sided coating were achieved. Structure investigations with atomic force microscopy and scanning electron microscopy revealed that the antireflective coatings were highly porous and affected by spin speed and by the concentration and particle size of PMMA latex. Spin coating may be a better method for mass production, because of its convenience, low cost, and good reproducibility.  相似文献   

8.
The seed-mediated growth of gold nanorods is shown to be strongly dependent on the reaction time and chemical environment of the reaction solution. The versatile seed-mediated approach in aqueous surfactant solutions has been used in this study for the synthesis of gold nanorods. Changes in the aspect ratio of gold nanorods were reflected in shifts of the plasmon resonance peaks and were monitored using UV-Visible absorption spectroscopy (UV-Vis) to follow the different stages of gold nanorod formation as a function of time and varying amounts of silver ion. Unlike the use of strong reducing agents to make spherical gold nanoparticles, the growth of gold nanorods requires weak reducing conditions, leading to an unknown degree of gold reduction. Therefore, cyclic voltammetry was used to electrochemically interrogate the entire reaction from gold seed to gold nanorod as a function of time. Data obtained revealed that time-dependent gold species are involved in gold nanorod formation.  相似文献   

9.
The synthesis and characterisation of gold nanorods have been carried out by reduction of the gold salt HAuCl4. This has been done using a single reducing agent, acetylacetone, rather than the two reducing agents, sodium borohydride and ascorbic acid, normally required by standard wet chemistry methods of gold nanorod formation. Using this novel method, the nanorods were synthesised at several different pH values which were found to greatly affect both the rate at which the nanorods form and their physical dimensions. The concentrations of acetylacetone and silver nitrate used relative to the gold salt were found to alter the aspect ratio of the nanorods formed. Rods with an average length of 42 nm and an aspect ratio of 4.6 can be easily and reproducibly formed at pH 10 using this method. Nanorods formed under optimum conditions were investigated using TEM. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

10.
用膜系设计软件设计了λ/4-λ/2的W型的双层减反射薄膜,优化了薄膜的光学常量,并使用溶胶-凝胶技术在玻璃基底上成功镀制了该双层折射率梯度的减反射薄膜.用椭圆偏振光谱仪、紫外-可见-近红外分光光度计、原子力显微镜等分析表征了薄膜的性能.结果表明,镀制了该双层薄膜的玻璃在400 nm~800 nm波段平均透过率增加了近6%,同时薄膜显示出了极佳的机械强度.  相似文献   

11.
太阳能玻璃表面高强度双层减反膜制备研究   总被引:2,自引:0,他引:2  
用膜系设计软件设计了λ/4-λ/2的W型的双层减反射薄膜,优化了薄膜的光学常量,并使用溶胶-凝胶技术在玻璃基底上成功镀制了该双层折射率梯度的减反射薄膜.用椭圆偏振光谱仪、紫外-可见-近红外分光光度计、原子力显微镜等分析表征了薄膜的性能.结果表明,镀制了该双层薄膜的玻璃在400 nm~800 nm波段平均透过率增加了近6%,同时薄膜显示出了极佳的机械强度.  相似文献   

12.
采用溶胶-凝胶工艺制备了聚乙二醇(PEG)改性SiO2单层增透膜,用输出波长1.06 μm,脉宽3 ns的调Q激光系统产生的强激光进行辐照实验。观察了添加PEG前后的膜层的微结构、表面形貌以及激光损伤行为的变化,讨论了PEG对薄膜激光损伤行为产生影响的机制。结果表明:添加的PEG可以修饰、导向溶胶簇团的生长和交联,并使之有序,由此制备的薄膜结构规整,微缺陷减少,这就提高了膜层的激光损伤阈值;在激光辐照过程中,膜料吸收激光能量,膜层温度升高,膜层的PEG分子受热逐步分解挥发,膜层产生损伤。  相似文献   

13.
 采用溶胶-凝胶工艺制备了聚乙二醇(PEG)改性SiO2单层增透膜,用输出波长1.06 μm,脉宽3 ns的调Q激光系统产生的强激光进行辐照实验。观察了添加PEG前后的膜层的微结构、表面形貌以及激光损伤行为的变化,讨论了PEG对薄膜激光损伤行为产生影响的机制。结果表明:添加的PEG可以修饰、导向溶胶簇团的生长和交联,并使之有序,由此制备的薄膜结构规整,微缺陷减少,这就提高了膜层的激光损伤阈值;在激光辐照过程中,膜料吸收激光能量,膜层温度升高,膜层的PEG分子受热逐步分解挥发,膜层产生损伤。  相似文献   

14.
Abstract

A new seedless wet chemistry synthesis of gold nanorods by using hydrogen peroxide as the weak reducing agent is reported. A reduced concentration of hexadecyltrimethylammonium bromide is used in our experiment, and the synthesized gold nanorods exhibit tunable longitudinal surface plasmon resonance peaks ranging from 725 to 945?nm. The influence on gold nanorods growth by adjusting the amounts of sodium hydroxide, silver nitrate, sodium borohydride, and hexadecyltrimethylammonium bromide were investigated by the visible-near infrared spectroscopy. Under the proper experimental parameters, the longitudinal surface plasmon resonance peaks can be tuned by varying the hydrogen peroxide amounts. Furthermore, it can be seen that the redshift of the longitudinal absorption peak of the prepared gold nanorods with increasing hydrogen peroxide amount is consistent with the increase tendency of the length-to-width aspect ratio obtained from the transmission electron microscopy images. The method provides a facile pathway to prepare gold nanorods with tunable longitudinal surface plasmon resonance peaks, which have potential applications in biomedicine and nanophotonics.  相似文献   

15.
Most of lasers used for imaging and heating gold nanorods are single-wavelength lasers and their efficiency to interact with different gold nanorods is limited. In this study, we demonstrated that supercontinuum light could be a fast, effective and energy efficient excitation source for heating of gold nanorods. The photothermal effect and the heating speed of gold nanorods illuminated by a supercontinuum light and femtosecond pulses through two-photon excitation are experimentally studied through using transmission electron microscopy images and photoluminescence images of gold nanorods. It is found that the supercontinuum light improves the heating speed by 39 %, and melts 30 % more of gold nanorods compared with the femtosecond pulse excitation approach. The heating speed of gold nanorods by supercontinuum light depends not only on its polarization states, but also on the pulse width and numerical aperture of its focused beam. It has been found that the supercontinuum is more efficient in heating of gold nanorods, making it potentially valuable for clinical applications.  相似文献   

16.
A critical (steady state) value of the thermal expansion coefficients of different coatings was determined by a nondestructive technique (NDT) known as laser shearography. The behavior of organic coatings, i.e., ACE premium-grey enamel, a yellow acrylic lacquer, and a gold nail polish on a metallic alloy, i.e., a carbon steel, was investigated over a temperature range of 20–60 °C. The value of the thermal expansion coefficients of coatings was derived from the slope of the plot of the thermal deformation (strain) versus the applied temperature. The integrity of the coatings with respect to time was assessed by comparison the measured coefficients of thermal expansion (CTE) to the critical (steady state) or asymptotic value of CTE. By shearography, measurement of coating properties could be performed independent of parameters such as UV exposure, humidity, presence of chemical species, and other parameters which may normally interfere with conventional methods of the assessing of the integrity of coatings. Therefore, one may measure CTE of coatings, regardless of the history of the coating, in order to assess the integrity of coatings. Also, the obtained shearography data were found to be in a reasonable trend with the data of electrochemical impedance spectroscopy (EIS) in 3%NaCl solution.  相似文献   

17.
We investigate the dependence of the size parameter in the Mie scattering theory on the near-field enhanced Raman scattering properties for high dielectric constant ZnO nanorods grown randomly by PLD (pulsed laser deposition). High Raman signals of Rhodamine 6G (R6G) at 532 nm excitation wavelength were observed with nanorods of 400 nm average diameter. This experimental result was explained theoretically by the size parameter described in the Mie scattering theory, not by surface plasmon polaritons. This was also confirmed by the near-field distribution calculated by the FDTD (Finite-Difference Time Domain) method. The ZnO nanorods with 400 nm average diameter can detect as low as 1 μM of R6G. This near-field enhancement factor is equivalent to that with 10-nm-thick gold-coated ZnO nanorods (nanoshells) with an average core diameter of 100 nm. Controlling the diameter of bare ZnO nanorods is effective for obtaining large enhancement factors without an additional process of gold thin film coating on them.  相似文献   

18.
《Infrared physics》1984,24(2-3):121-128
FTIR spectroscopy has been applied in the study of coatings on aluminium, iron and silicon steel sheets. The following coatings have been investigated: on aluminium—oxide, anodic oxide, phosphate and chromate; on iron or steel—oxide, silicate and phosphate. From good quality IR spectra of these coatings much important information has been obtained, for example: quantitative phase composition of the coatings and their structure, metal-coating chemical bonding, mechanism of the coating formation and correlation between coating spectra and their properties. The phenomena and the interpretation of the reflectance IR spectra are discussed, i.e. TO-LO mode splitting for thin coatings and light interference on the sample. The presented FTIR spectra show that these measurement techniques can be applied as a non-destructive research method in different fields of the coating industries and in corrosion science.  相似文献   

19.
Anti-reflection (AR) sol–gel coatings are deposited on wedge glass optics for high-power lasers using spin coating technique. Characterization of these coatings on BK-7 glass substrates is carried out in terms of thickness profile across the surface, thickness variation w.r.t. wedge angle, and its effect on AR coating reflectivity, at different wedge angles from 1° to 7°. Results of the study are used to deposit AR coatings on inclined end faces of Nd:phosphate glass laser rods.  相似文献   

20.
The use of plasma processing for spraying is reviewed, with emphasis on the material used, their sprayed structure, and successfully applied coatings. It is noted that new and further developments in plasma spray processes, spray devices, and spray materials have led to advantages in the realization of functional coatings and applications ranging from conventional to highly specialized industries. Different functions of the sprayed coatings can be achieved by choosing various plasma-process variations and any of a high number of useful coating materials. The plasma-spray process can be regarded as almost universal because of its inherently high process temperature, which allows almost unlimited combinations of coating and base material to be used  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号