首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In order to reduce the Schottky barrier height and sheet resistance between graphene(Gr) and the p-GaN layers in GaN-based light-emitting diodes(LEDs), conductive transparent thin films with large work function are required to be inserted between Gr and p-GaN layers. In the present work, three kinds of transparent conductive oxide(TCO) zinc oxide(ZnO) films, Al-, Ga-, and In-doped ZnO(AZO, GZO, and IZO), are introduced as a bridge layer between Gr and p-GaN,respectively. The influence of different combinations of Gr/ZnO hybrid transparent conducting layers(TCLs) on the optical and thermal characteristics of the GaN-LED was investigated by the finite element method through COMSOL software. It is found that both the TCL transmittance and the surface temperature of the LED chip reduce with the increase in Gr and ZnO thickness. In order to get the transmittance of the Gr/ZnO hybrid TCL higher than 80%, the appropriate combination of Gr/ZnO compound electrode should be a single layer of Gr with ZnO no thicker than 400 nm(1 L Gr/400-nm ZnO),2 L Gr/300-nm ZnO, 3 L Gr/200-nm ZnO, or 4 L Gr/100-nm ZnO. The LEDs with hybrid TCLs consisting of 1 L Gr/300-nm AZO, 2 L Gr/300-nm GZO, and 2 L Gr/300-nm IZO have good performance, among which the one with 1 L Gr/300-nm GZO has the best thermal property. Typically, the temperature of LEDs with 1 L Gr/300-nm GZO hybrid TCLs will drop by about 7 K compared with that of the LEDs with a TCL without ZnO film.  相似文献   

2.
Thermo-electrical characterizations of hybrid polymer composites, made of epoxy matrix filled with various zinc oxide (ZnO) concentrations (0, 4.9, 9.9, 14.9, and 19.9 wt%), and reinforced with conductive carbon black (CB) nanoparticles (0.1 wt%), have been investigated as a function of ZnO concentration and temperature. Both the measured DC-electrical and thermal conductivities showed ZnO concentration and temperature dependencies. Increasing the temperature and filler concentrations were reflected in a negative temperature coefficient of resistivity and enhancement of the electrical conductivity as well. The observed increase in the DC conductivity and decrease in the determined activation energy were explained based on the concept of existing paths and connections between the ZnO particles and the conductive CB nanoparticles. Alteration of ZnO concentration with a fixed content of CB nanoparticles and/or temperature was found to be crucial in the thermal conductivity behavior. The addition of CB nanoparticles to the epoxy/ZnO matrix was found to enhance the electrical conduction resulting from the electronic and impurity contributions. Also, the thermal conductivity enhancement was mostly attributed to the heat transferred by phonons and electrons hopping to higher energy levels throughout the thermal processes. Scanning electron microscopy and energy-dispersive spectroscopy were used to observe the morphology and elements’ distribution in the composites. The observed thermal conductivity behavior was found to correlate well with that of the DC-electrical conductivity as a function of the ZnO content. The overall enhancements in both the measured DC- and thermal conductivities of the prepared hybrid composites are mainly produced through mutual interactions between the filling conductive particles and also from electrons tunneling in the composite's bulk as well.  相似文献   

3.
热蒸发法在硅基底上制备了任意取向的氧化锌纳米线阵列。经过热蒸发过程,硅基底表面覆盖了大量均匀分布的氧化锌岛,在这些岛上生长出了直径为几十纳米的非定向纳米线。出于实用考虑,基底周围的温度在制备过程中保持在500°C以下。从这些氧化锌纳米线获得了场发射。测得10μA/cm2所对应的开启场强为3.0V/μm。并且用透明阳极技术研究了发射中心分布。观察到场发射来自于整个样品表面。从这些结果可以看出氧化锌纳米线在平板显示器中有着巨大的应用潜力.  相似文献   

4.
利用H在ZnO中作为浅施主杂质的特性,研究了H掺杂对ZnO:Al透明导电薄膜特性的影响。通过降低ZnO:Al中Al的含量并同时引入H掺杂,解决了透明导电薄膜中高导电性与高透过率之间的矛盾。H的掺杂可以显著降低ZnO基透明导电薄膜的电阻率,这是由于H一方面作为施主可以提供电子从而提高了自由载流子浓度;另一方面与ZnO晶界中的O-结合降低了晶界势垒,提高了载流子迁移率。利用H掺杂,可以在Al掺杂量降低10倍的情况下,仍然能获得低电阻率(6.3×10-4 Ω·cm)的透明导电薄膜,同时其近红外波段(1 200 nm)透光率从64%提高到90%。这种具有高导电性和高透光性的透明导电薄膜可以应用于各类薄膜太阳能电池中以提升器件效率。  相似文献   

5.
高分子软模板法自组装生长ZnO纳米线及其光学性能   总被引:1,自引:1,他引:0       下载免费PDF全文
采用自组装技术,利用均聚极性高分子(聚丙烯酰胺、聚乙烯醇等)长分子链作为自组装模板在半导体硅衬底上自组装生长出ZnO纳米线。采用扫描电镜(FE-SEM)和透射电镜(HRTEM)对样品的表面形貌和结构分析表征的结果表明,ZnO纳米线直径约50~80nm、长度大于4μm,具有六方纤锌矿单晶结构,且沿c轴方向择优取向生长。采用室温下光致发光(PL)谱和紫外吸收(UV)光谱对制得的ZnO纳米线的光学性能研究表明,其PL光谱上有较强的紫外发射和较弱的蓝光发射,UV吸收光谱表明样品在紫外区有强的宽带吸收,且随着纳米线粒径的减小,吸收峰出现了蓝移现象。研究探讨了高分子诱导ZnO纳米线自组装定向生长机制、发光机理及其与工艺条件的内在联系。  相似文献   

6.
Zinc oxide (ZnO) nanowires have been synthesized by using tubular furnace chemical vapor deposition technique. The morphology, chemical composition and crystal structure of as-synthesized ZnO nanowires were examined by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS) and X-ray diffraction (XRD) techniques. Four-terminal current-voltage (I-V) measurements were employed to study the electrical conductance of ZnO nanowires under various testing gas environments for gas sensing purpose. The I-V curves at temperature ranging from 150 to 300 K were recorded in the testing chamber under vacuum. The Arrhenius plot shows perfect linear relationship between the logarithm of the current I and inverse temperature 1/T. The donor level of the semiconducting nanowires is about 326 meV. The I-V behaviors were found to be reversible and repeatable with testing gases. The electrical conductivity was enhanced by a factor of four with ambient CO gas compared to that in vacuum and other testing gases. The optoelectronic properties of the ZnO nanowires were obtained by two-terminal I-V measurement method while the nanowires were illuminated by a ruby laser. The electrical conductivity was increased by 60% when the laser was present in comparison to that when the laser was off. Those significant changes suggest that nano-devices constructed by the ZnO nanowires could be used in gas sensing and optical switching applications.  相似文献   

7.
综合氧化锌纳米线(ZnO NWs)的光学活性与聚苯胺(PANI)的空穴传输特性,设计并制备了一种聚合物/ZnO纳米线电致发光材料,并对其发光特性进行了研究。通过高分子络合软模板法,将有序的单晶ZnO NWs均匀生长在覆有铟锡氧化物(ITO)涂层的柔性聚乙烯对苯二甲酸乙二醇酯(PET)衬底上并嵌入PANI薄膜,获得了电致发光薄膜材料和有机/无机异质结实验器件ITO/(ZnO NWs-PANI)。有机/无机异质结器件电致发光可调,在相对低的开启电压下呈现室温蓝紫外发光,并且ZnO NWs表面覆盖PANI增加了蓝紫外发光的强度和稳定性;而无PANI的ZnO NWs阵列具有450 nm处的缺陷发射峰,这可能是电子从扩展态锌间隙Zni到价带的跃迁引起的。这些结果表明,基于PANI/ZnO纳米线的复合材料在柔性光电器件方面的应用极具潜力。  相似文献   

8.
Hybrid tris(8-hydroxyquinoline)aluminum/zinc oxide (Alq3/ZnO) nanowires were successfully grown from a one-step solution method at very low temperature. The transformation of amorphous Alq3 into α-phase crystalline nanowires was achieved by incorporating a certain weight fraction of crystalline ZnO nanomaterials. A growth mechanism was proposed to validate the formation of crystalline Alq3-ZnO hybrid nanowires with the help of nucleation initiated by the ZnO nanomaterials, followed by Alq3 molecular aggregation. Effects of temperature on the evolution of morphologies of hybrid nanowires were examined by the field-emission scanning electron microscopy (FESEM). The photoluminescence (PL) spectra of hybrid nanowires showed a significant threefold enhancement in PL intensity, along with a slight blue-shift emission, when compared to the pure Alq3 molecules, which were attributed due to the incorporation of crystalline ZnO nanomaterials and also the shielding effect of ZnO nanomaterials to avoid the excimer formation between the Alq3 molecules in the excited state.  相似文献   

9.
Metal-catalyst-assisted thermal chemical vapor transport is one of most popular techniques for ZnO nanowires preparation, and the vapor-liquid-solid (VLS) process is recognized to be responsible for ZnO nanowires growth upon metal-catalyst-assisted thermal chemical vapor transport. However, there have been very few investigations to provide substantial experimental evidence for supporting ZnO VLS nanowires growth upon metal-catalyst-assisted thermal chemical vapor transport, so far. Herein, we report a study of ZnO nanowires growth using metal-catalyst-assisted thermal chemical vapor transport based on laser ablation, and we provide solid experimental evidence for the VLS process of ZnO nanowires.  相似文献   

10.
Developing efficient and cost-effective photoanode plays a vital role determining the photocurrent and photovoltage in dye-sensitized solar cells (DSSCs). Here, we demonstrate DSSCs that achieve relatively high power conversion efficiencies (PCEs) by using one-dimensional (1D) zinc oxide (ZnO) nanowires and copper (II) oxide (CuO) nanorods hybrid nanostructures. CuO nanorod-based thin films were prepared by hydrothermal method and used as a blocking layer on top of the ZnO nanowires’ layer. The use of 1D ZnO nanowire/CuO nanorod hybrid nanostructures led to an exceptionally high photovoltaic performance of DSSCs with a remarkably high open-circuit voltage (0.764 V), short current density (14.76 mA/cm2 under AM1.5G conditions), and relatively high solar to power conversion efficiency (6.18%) . The enhancement of the solar to power conversion efficiency can be explained in terms of the lag effect of the interfacial recombination dynamics of CuO nanorod-blocking layer on ZnO nanowires. This work shows more economically feasible method to bring down the cost of the nano-hybrid cells and promises for the growth of other important materials to further enhance the solar to power conversion efficiency.  相似文献   

11.
The thermal conductivity (TC) of compression-moulded polypropylene (PP) and PP filled with 5–15% zinc oxide (ZnO) or calcium carbonate (CaCO3) nanoparticles, prepared by extrusion, was studied using a thermal conductivity analyzer (TCA). The effect of nanoparticle content and crystallinity on the thermal conductivity was investigated using conventional methods, including SEM, XRD, and DSC. The incorporation of nanoparticles improved the crystallinity and thermal conductivity simultaneously. The experimental TC values of the PP nanocomposites with different level of nanoparticles concentration showed a linear increase with an increase in crystallinity. The TC improvement in PP/ZnO nanocomposite was greater than that of PP/calcium carbonate nanocomposites. This fact can be attributed to the intrinsic, better thermal conductivity of the ZnO nanoparticles. Several models were used for prediction of the TC in the nanocomposites. In the PP/ZnO nanocomposites the TC values correlated well with the values predicted by the Series, Maxwell, Lewis and Nielson, Bruggeman, and De Loor models up to 10 wt%.  相似文献   

12.
吴臣国  沈杰  李栋  马国宏 《物理学报》2009,58(12):8623-8629
采用直流磁控反应溅射方法,通过调节氧分压在玻璃基底上制备了不同载流子浓度的掺Mo的ZnO(ZMO)透明导电薄膜.应用太赫兹电磁波时域光谱技术研究了ZMO导电膜的太赫兹电磁波透射性质及介电响应,得到了与频率相关的电导率、能量吸收和薄膜折射率,实验结果与经典Drude模型相符很好.ZMO导电膜的太赫兹电磁波脉冲透射性质表明,通过调节ZMO薄膜的载流子浓度,该导电膜可作为应用于衬底和光学器件等太赫兹电磁波频率范围的宽带抗反射涂层. 关键词: 太赫兹电磁波光谱 薄膜电导率 宽带抗反射 透明导电薄膜  相似文献   

13.
近年来,科研工作者对ZnO纳米材料研究产生了浓厚的兴趣。ZnO是一种具有宽带隙(3.37 eV)和较大的激子束缚能(60 meV)的六方纤锌矿结构半导体材料。它具有优异的光电、压电、压敏及发光等特性,在发光(激光)二极管、传感器、发光器件、紫外探测器等领域都有非常好的应用前景。至今,有很多非常成熟的实验方法(包括静电纺丝、水热法、溶胶-水热法、化学气相沉积法、旋涂法及电化学沉积法等)用来合成ZnO纳米材料,如纳米线、纳米棒、纳米盘及量子点等。氧化锌纳米结构的制备和性质已得到了广泛的研究,ZnO的可见发光机理一直是研究的热点,但很少有人对可见光范围内的光致发光进行总结。光致发光光谱能反映一些重要信息,如表面缺陷和氧空位、半导体材料的表面状态、光诱导电荷转移过程等。有学者认为ZnO的发光机理与其晶体缺陷有关,还有研究者认为其发光机理与氧空位有关等。通过量子限域效应、带边调制、表面修饰方法、缺陷调控方法等方面综述了ZnO可见区发光机理。  相似文献   

14.
采用简单的热蒸发方法得到具有不同尺寸的混合ZnO-Zn2SnO4 (ZnO-ZTO)纳米线,并对纳米线进行结构和成分分析,试验还以甲基橙溶液为处理对象考察了ZnO-ZTO纳米线的光催化活性.结果表明ZnO-ZTO 混合纳米线的光催化性较纯ZnO、纯Zn2SnO4纳米线有较大提高; 光催化剂浓度对光降解效率有很大影响, 与纯ZnO、纯Zn2SnO4纳米线相比,少量的ZnO-ZTO纳米线即达到较高的光催化效率;并且光催化活性随着纳米线直径的减小而增加. 实验表明异质结的存在能够加快电子空穴的分离,提高光催化活  相似文献   

15.
Here we report the fabrication of a novel nano-level hybrid of ZnO nanoparticles (NPs) and liquid crystals (LCs) by the attachment of organic LC molecules with a mercapto moiety, namely, 4′-n-(6-mercaptohexyloxy)-4-cyanobiphenyl (6CNBP-SH), to the surface of ZnO nanoparticles. The dispersion of modified ZnO NPs (6CNBP-SH@ZnO) is greatly improved by the surface modification of 6CNBP-SH ligands. The photoluminescence (PL) measurement shows that the ultra-violet emission of ZnO can be enhanced by the surface modification of 6CNBP-SH ligands and annealing at liquid crystal state temperature of 6CNBP-SH@ZnO (110 °C). Meanwhile, defect-related emission of ZnO in 6CNBP-SH@ZnO almost disappears. We attribute this observation to the energy transfer between the ZnO NPs and 6CNBP-SH, surface passivation of the ZnO and formation of ZnO nano-dispersing structure induced by 6CNBP-SH molecules. The anisotropic behavior of 6CNBP-SH@ZnO is also investigated. The results indicated that the 6CNBP-SH liquid-crystalline ligands could endow the 6CNBP-SH@ZnO hybrid obvious mesoscopic behavior. In addition, the increased optical anisotropy of 6CNBP-SH@ZnO is also observed upon thermal treatment at 110 °C.  相似文献   

16.
利用场效应晶体管器件和介电力显微镜来研究氧化锌纳米线表面吸附分子对其电导率的影响. 相比于空气中,ZnO纳米线场效应晶体管器件在氮气中电导率更高,介电力显微镜得的介电信号也是在氮气中更大. 影响ZnO纳米线电导率变化的主要原因是表面吸附分子数量的变化,而并不是电极与材料之间接触性质的变化.  相似文献   

17.
Oxygen-deficient (OD) and nearly stoichiometric (NST) ZnO and In2O3 nanowires/nanoparticles were synthesized by chemical vapor deposition on Au-coated silicon substrates. The OD ZnO and OD In2O3 nanowires were synthesized at 750 and 950°C, respectively, using Ar flow at ambient pressure. A mixture of flowing Ar and O2 was used for synthesizing NST ZnO nanowires and NST In2O3 nanoparticles. Growth of OD ZnO nanowires and NST In2O3 nanoparticles was found to be via a vapor–solid (VS) mechanism and the growth of NST ZnO nanowires was via a vapor–liquid–solid mechanism (VLS). However, it was uncertain whether the growth of OD In2O3 nanowires was via a VS or VLS mechanism. The optical constants, thickness and surface roughness of the prepared nanostructured films were determined by spectroscopic ellipsometry measurements. A three-layered model was used to fit the calculated data to the experimental ellipsometric spectra. The refractive index of OD ZnO, NST ZnO nanowires and NST In2O3 nanoparticles films displayed normal dispersion behavior. The calculated optical band gap values for OD ZnO, NST ZnO, OD In2O3 nanowires and NST In2O3 nanoparticles films were 3.03, 3.55, 2.81 and 3.52?eV, respectively.  相似文献   

18.
Vapor phase transport (VPT) assisted by thermal evaporation of methanol was utilized to favor the fabrication of hybrid carbon-decorated zinc oxide nanowires (C/ZnO NWs). The photoluminescence (PL) spectrum revealed evidence of optical properties for several defects such as zinc interstitials (Zni) and oxygen vacancy (Vo) in hybrid C/ZnO NWs. The PL also exhibited that the planar hybrid C/ZnO NWs photodetector has a wide range of sensitivity from ultraviolet (UV) to infrared (IR). The imaging results show formation of ZnO nanostructures which can be further confirmed from X-ray diffraction (XRD) results. XRD exhibits carbon (C)-related peaks at 12.88, 26, 43, 45, and 55° together with standard ZnO peaks. The incorporation of C shows excellent photoconduction towards varied laser powers (0.0, 7.82, 37.95, 69.20, 100.0, 130.0, and 160.0 mW) of IR illumination. The possibility of current drain in the device was evaluated based on the direct-current (DC) bias voltage of 0.00, 3.33, and 5.55 V. DC bias 3.33 and 5.55 V attributed increase of photocurrent towards the forward bias voltage. However, the reverse bias voltage illustrated a vast increase of photocurrent compared to the forward bias voltage. External quantum efficiency (EQE) at DC bias 5.55 V was 6.5–9.5 range folds greater than the EQE measured for zero bias voltage. Significant photoresponsivity was identical for various laser pulse ranging from 10 to 5000 Hz. Simultaneously, the rise (τr) and fall (τf) time were measured at 49 and 60.5 μs attributes that the fabrication technique can be improvised and implemented to enhance the efficiency of optoelectronic devices for future applications.  相似文献   

19.
The thermal conductivity of zinc oxide-polymethyl methacrylate (PMMA) composites has been measured. Using theoretical models, the thermal resistance of ZnO-NW/PMMA interfaces (NW is the nanowire) and the critical particle radius above which the composite thermal conductivity can be increased have been estimated. Based on these measurements, the dependence of the thermal conductivity of zinc oxide nanowires on their diameter has been determined.  相似文献   

20.
吴子华  谢华清*  曾庆峰 《物理学报》2013,62(9):97301-097301
ZnO是一类具有潜力的热电材料, 但其较大声子热导率影响了热电性能的进一步提高. 纳米复合是降低热导率的有效途径. 本文以醋酸盐为前驱体, 溶胶-凝胶法制备了Ag-ZnO纳米复合热电材料. 扫描电镜照片显示ZnO颗粒呈现多孔结构, Ag纳米颗粒分布于ZnO的晶粒之间. Ag-ZnO纳米复合材料的电导率比未复合ZnO材料高出100倍以上, 而热导率是未复合ZnO材料的1/2. 同时, 随着Ag添加量的增加, 赛贝克系数的绝对值逐渐减小. 综合以上原因, 添加7.5%mol Ag的Ag-ZnO纳米复合材料在700 K时的热电优值达到0.062, 是未复合ZnO材料的约25倍. 在ZnO基体中添加导电金属颗粒有利于产生导电逾渗通道, 提高材料体系的电导率, 但同时导致赛贝克系数的绝对值减小. 总热导率的差异来源于声子热导率的差异. 位于ZnO晶界的纳米Ag颗粒, 有利于降低声子热导率. 关键词: 热电材料 ZnO 纳米复合 热导率  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号