首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
We present a method for the sintering of silver (Ag) nanoparticle thin films by millisecond pulsed laser irradiation. The microstructure of sintered thin films and sintering behaviors of nanoparticles were systematically investigated in this paper. Absorption spectra of sintered thin films showed blue-shifted surface plasmon resonances (SPR) from 500 nm to 480 nm and red-shifted from 480 nm to 550 nm when laser power was varied from 100 W to 140 W and from 140 W to 200 W, respectively. This indicates a new technique to control light absorption through joining nanoparticles with laser sintering. According to theoretical calculations based on a heat diffusion model, the melting temperature of these Ag nanoparticles was estimated to be 440 °C during laser irradiation.  相似文献   

3.
This study refers to the effect of sodium polyacrylate concentration (1 to 5 mass %) and pH (10 to 12) on the synthesis of magnetic nanoparticles (magnetite?Cmaghemite) and their characterization by Mössbauer spectroscopy. The magnetic particles were obtained by coprecipitation method using iron chloride (II) and iron chloride (III) as precursor reagents and sodium polyacrylate as stabilizing agent. All samples showed Mössbauer broad resonance lines in typical doublet and sextets patterns of magnetite or maghemite with corresponding wide particle size distributions. The stability of magnetic particles was carried out by measuring particle sizes with dynamic light scattering (DLS). The z-average values for magnetic particles were in the range 24 to 590 nm and no significant change in size was observed on aging by leaving this material in air for 20 days. X-ray diffraction patterns showed characteristic peaks of the spinel structure and have an increase in their broadening as the pH decreases, effect that is dominated by the decrease in crystallite sizes. The nanoparticles showed to be magnetic at pH 12 and at room temperature.  相似文献   

4.
This paper addresses novel applications of an excimer laser (308 nm wavelength, 20 ns pulse duration) in nanofabrication. Specifically, laser assisted nanoimprint lithography (LAN), self-perfection by liquefaction (SPEL), fabrication of metal nanoparticle arrays, and the fabrication of sub-10-nm nanofluidic channels are covered. In LAN, a polymeric resist is melted by the laser pulse, and then imprinted with a fused silica mold within 200 ns. LAN has been demonstrated in patterning various polymer nanostructures on different substrates with high fidelity and uniformity, and negligible heat effect on both the mold and the substrate. SPEL is a novel technology that uses selective melting to remove fabrication defects in nanostructures post fabrication. Depending on the boundary conditions, SPEL is categorized into three basic types: Open-SPEL that takes place with surface open, Capped-SPEL where a cap plate holds the top surface of the nanostructures and Guided-SPEL where a plate held a distance above the structure guides the molten materials to rise and form a new structure with better profile. Using SPEL (in less than 200 ns), we have achieved a reduction of line edge roughness (LER) of Cr lines to 1.5 nm (3σ) (560% improvement from the original), which is well below what the previous technologies permit, and a dramatic increase of the aspect ratio of a nanostructure. We have used SPEL to make sub-25-nm smooth cylindrical NIL pillar molds and smoothing Si waveguides. Excimer laser is also used to make metal nanoparticles. Monolayers of particles are fabricated on various substrates (silicon, fused silica and plastics) by exposing thin metal films to a single laser pulse. Periodic nanoparticle arrays have been fabricated by fragmentation of metal grating lines. The periodicity of these nanoparticles can be regulated by surface topography such as shallow trenches. Finally, an excimer laser pulse has been used to melt the top portion of 1D and 2D Si gratings to seal off the top surface, forming enclosed nanofluidic channel arrays. The channel width has been further reduced to 9 nm using self-limited thermal oxidation. DNA stretching using 20 nm wide self-sealed channels is also demonstrated.  相似文献   

5.
Cu-nanoparticles have been prepared by ablating a copper target submerged in benzene with laser pulses of Nd:YAG (wavelength: 355, 532 nm and 1,064 nm). Colloidal nanoparticles have been characterized by UV–Vis spectroscopy and transmission electron microscopy. The obtained radius for the nanoparticles prepared using 1,064 nm irradiation lies in the range 15–30 nm, with absorption peak at 572 nm. Luminescence properties of Tb3+ ions in the presence and absence of Cu-nanoparticles have been investigated using 355 nm excitation. An enhancement in luminescence of Tb3+ by local field effect causing increase in lifetime of 5D4 level of Tb3+ ion has been observed. Frequency and temperature-dependent conductivity of Tb3+ doped PVA thin films with and without Cu-nanoparticles have been measured in the frequency range 20 Hz–1 MHz and in the temperature range 318–338 K (well below its melting temperature). Real part of the conductivity spectra has been explained in terms of power law. The electrical properties of the thin films show a decrease in dc conductivity on incorporation of the Cu-nanoparticles.  相似文献   

6.
This paper reports on the dispersion stability of 150 nm polyvinyl alcohol coated biochar nanoparticles in brine water. Biochar is a renewable, carbon based material that is of significant interest for enhanced oil recovery operations primarily due to its wide ranging surface properties, low cost of synthesis, and low environmental toxicity. Nanoparticles used as stabilizing agents for foams (and emulsions) or in nanofluids have emerged as potential alternatives to surfactants for subsurface applications due to their improved stability at reservoir conditions. If, however, the particles are not properly designed, they are susceptible to aggregation because of the high salinity brines typical of oil and gas reservoirs. Attachment of polymers to the nanoparticle surface, through covalent bonds, provides steric stabilization, and is a necessary step. Our results show that as the graft density of polyvinyl alcohol increases, so too does the stability of nanoparticles in brine solutions. A maximum of 34 wt% of 50,000 Da polyvinyl alcohol was grafted to the particle surface, and the size of the particles was reduced from ~3500 nm (no coating) to 350 nm in brine. After 24 h, the particles had a size of ~500 nm, and after 48 h completely aggregated. 100,000 Da PVA coated at 24 wt% on the biochar particles were stable in brine for over 1 month with no change in mean particle size of ~330 nm.  相似文献   

7.
Size of nanoparticles is an important parameter for their applications. The real-time monitoring is required for reliable and reproducible production of nanoparticles with controllable size. We present results of our research on development of the system for the online nanoparticle characterization during their production by a laser. The laser ablation chamber which allows measurements of surface plasmon resonance spectra during the nanoparticle generation process has been designed and fabricated. The online characterization system was tested by producing and modification of gold nanoparticles. Nanoparticles were generated by nanosecond-laser (wavelength 1064 nm) ablation of gold target in deionized water, and optimal conditions for the highest nanoparticle productivity were estimated. The mean diameter of nanoparticles was determined using their absorption spectra measured in the real-time during the ablation experiments and from the TEM images analysis, and it varied from 20 to 45 nm. The mismatch between nanoparticle diameters, estimated using these two methods, is due to the polydispersity of the generated nanoparticles. The further experiments of laser-induced modification of colloidal gold nanoparticles were carried out using second harmonic (wavelength 532 nm) of nanosecond Nd:YAG laser and alteration in nanoparticle size were acquired by the online measurement system.  相似文献   

8.
Sodium ion conducting solid polymer blend electrolyte thin films have been prepared by using polyvinyl alcohol (PVA)/poly(vinyl pyrrolidone) (PVP) with NaNO3 by solution cast technique. The prepared films were characterized by various methods. The complexation of the salt with the polymer blend was identified by X-ray diffraction (XRD) and Fourier transforms infrared spectroscopy (FTIR), Differential scanning calorimetry was used to analyze the thermal behavior of the samples, and the glass transition temperature is low for the highest conducting polymer material. The scanning electron microscopy gives the surface morphology of the polymer electrolytes. The frequency and temperature dependent of electrical conductivities of the films were studied using impedance analyzer in the frequency range of 1 Hz to 1 MHz. The highest electrical conductivity of 50PVA/50PVP/2 wt% NaNO3 concentration has been found to be 1.25 × 10?5 S cm?1 at room temperature. The electrical permittivity of the polymer films have been studied for various temperatures. The transference number measurements showed that the charge transport is mainly due to ions than electrons. Using this highest conducting polymer electrolyte, an electrochemical cell is fabricated and the parameters of the cells are tabulated.  相似文献   

9.
Substantial photo-induced optical anisotropy was discovered in ZnO/PVA nanocomposites under the influence of external bicolor laser illumination. Zinc oxide nanoparticles were synthesized by electrolysis of a sodium chloride aqueous medium including poly-methacrylic acid (PMA) in a cell system having a soluble zinc anode. The structural analysis of the ZnO powder samples has been carried out by X-Ray Diffractometry (XRD) and Scanning Electron Microscopy (SEM). The polyvinyl alcohol (PVA) embedded ZnO films obtained from the powder samples possess larger grain sizes than those in powder form. The films were prepared from the same polymer matrix but elaborated with two different PVA contents which are respectively 15% and 30%. The photoinduced anisotropy was identified by using two bicolor Er: glass laser beams incident at different angles. Substantial influence of the technological processes on the embedded nanoparticle sizes and related birefringence was explored. The process of laser induced anisotropy shows an occurrence of birefringence saturation.  相似文献   

10.
Two water-soluble and biodegradable polymers: xanthan gum (XG) and poly(vinyl alcohol) (PVA) were used to synthesize ecologically friendly solid polymer electrolyte (SPE) matrices. While XG is a natural polymer, PVA is a synthetic one, but both are colorless and form transparent membranes. To obtain ionic conductivity properties, the samples were doped with acetic acid and characterized by electrochemical impedance spectroscopy (EIS), X-ray diffraction, UV-Vis spectroscopy, and tensile test. The best results of ionic conductivity of 1.97 × 10?4 and 7.41 × 10?4 S/cm at room temperature and 80 °C, respectively, were obtained for the sample containing 55 wt% of acetic acid. Moreover, this electrolyte was found to be predominantly amorphous with transmittance in the visible region of 80% and absorbance values below 0.5 between 240 and 375 nm. Tensile test of this sample, applied up to 18 N of maximum force, resulted in strain of 2322% and Young’s modulus of 0.02 MPa. The obtained results showed that these new eco-friendly materials are promising for use as electrolytes in electrochemical devices.  相似文献   

11.
We have synthesized iron oxide nanoparticles coated with a monolayer of dextran, with molecular weights of the polymer between 5 and 670 kDa. Transmission electron microscopy images confirm that the hard core has a crystalline diameter of approximately 12 nm. The hydrodynamic diameters of these coated nanoparticles in solution measured using dynamical light scattering and estimated from magnetic susceptibility studies vary from near 90 nm for the lightest polymer to 140 nm for the heaviest polymer. Conversely, fluorescence correlation spectroscopy measurements yield a diameter of approximately 55 nm for the 15?C20 kDa dextran coated nanoparticles, which is consistent with the expected value estimated from the sum of the hard-core diameter and monolayer dextran coating. We discuss the implications of this discrepancy for applications involving polymer-coated magnetic nanoparticles.  相似文献   

12.
We present a novel and facile method enabling synthesis of iron oxide nanoparticles, which are composed mainly of maghemite according to X-ray diffraction (XRD) and Mössbauer spectroscopy studies. The proposed process is realized by anodic iron polarization in deaerated LiCl solutions containing both water and ethanol. Water seems to play an important role in the synthesis. Morphology of the product was studied by means of transmission electron microscopy and XRD. In the solution containing almost 100% of water a black suspension of round shaped maghemite nanoparticles of 20–40 nm size is obtained. Regulating water concentration allows to control nanoparticle size, which is reduced to 4–6 nm for 5% of water with a possibility to reach intermediate sizes. For 3% or lower water concentration nanoparticles are of a needle-like shape and form a reddish suspension. In this case phase determination is problematic due to a small particle size with the thickness of roughly 3 nm. However, XRD studies indicate the presence of ferrihydrite. Coercivities of the materials are similar to those reported for nanoparticle magnetite powders, whereas the saturation magnetization values are considerably smaller.  相似文献   

13.
Melting evolution and diffusion behavior of vanadium nanoparticles   总被引:2,自引:0,他引:2  
Molecular dynamics calculations have been performed to study the melting evolution, atomic diffusion and vibrational behavior of bcc metal vanadium nanoparticles with the number of atoms ranging from 537 to 28475 (diameters around 2–9 nm). The interactions between atoms are described using an analytic embedded-atom method. The obtained results reveal that the melting temperatures of nanoparticles are inversely proportional to the reciprocal of the nanoparticle size, and are in good agreement with the predictions of the thermodynamic liquid-drop model. The melting process can be described as occurring in two stages, firstly the stepwise premelting of the surface layer with a thickness of 2–3 times the perfect lattice constant, and then the abrupt overall melting of the whole cluster. The heats of fusion of nanoparticles are also inversely proportional to the reciprocal of the nanoparticle size. The diffusion is mainly localized to the surface layer at low temperatures and increases with the reduction of nanoparticle size, with the temperature being held constant. The radial mean square vibration amplitude (RMSVA) is developed to study the anharmonic effect on surface shells.  相似文献   

14.
Silicon nanoparticles were produced by femtosecond laser ablation in ambient air. Obtained samples were studied using dark-field optical microscopy, scanning electron microscopy and Raman-scattering spectroscopy. Two groups of structures can be found: (1) branched amorphous structures with a minimum element size of about 10 nm and incorporations of nanocrystals (0.6–6.6 nm from Raman scattering analysis); (2) larger crystal particles with smooth surface and a typical size of 50–200 nm that provide directional visible light scattering (at dark-field optical microscopy observations). An influence of environment on resulting phase composition of silicon nanoparticles was investigated by numerical evaluation of nanoparticle’s cooling rate. The calculation shows that cooling in ambient air ensures cooling rate sufficient for crystallization.  相似文献   

15.
Molecular dynamics is employed to study the melting of bulk gold and gold nanoparticles. PCFF, Sutton-Chen and COMPASS force fields are adopted to study the melting point of bulk gold and we find out that the Sutton-Chen force field is the most accurate model in predicting the melting point of bulk gold. Consequently, the Sutton-Chen force field is applied to study the melting points of spherical gold nanoparticles with different diameters. Variations of diffusion coefficient, potential energy and translational order parameter with temperature are analyzed. The simulated melting points of gold nanoparticles are between 615~1115 K, which are much lower than that of bulk gold (1336 K). As the diameter of gold nanoparticle drops, the melting point also descends. The melting mechanism is also analyzed for gold nanoparticles.  相似文献   

16.
Until now, the potential effects of titanium dioxide (TiO2) nanoparticles on endothelial cells are not well understood, despite their already wide usage. Therefore, the present work characterizes six TiO2 nanoparticle samples in the size range of 19 × 17 to 87 × 13 nm, which are commonly present in sun protection agents with respect to their physicochemical properties (size, shape, ζ-potential, agglomeration, sedimentation, surface coating, and surface area), their interactions with serum proteins and biological impact on human microvascular endothelial cells (relative cellular dehydrogenase activity, adenosine triphosphate content, and monocyte chemoattractant protein-1 release). We observed no association of nanoparticle morphology with the agglomeration and sedimentation behavior and no variations of the ζ-potential (?14 to ?19 mV) in dependence on the surface coating. In general, the impact on endothelial cells was low and only detectable at concentrations of 100 μg/ml. Particles containing a rutile core and having rod-like shape had a stronger effect on cell metabolism than those with anatase core and elliptical shape (relative cellular dehydrogenase activity after 72 h: 60 vs. 90 %). Besides the morphology, the nanoparticle shell constitution was found to influence the metabolic activity of the cells. Upon cellular uptake, the nanoparticles were localized perinuclearly. Considering that in the in vivo situation endothelial cells would come in contact with considerably lower nanoparticle amounts than the lowest-observable adverse effects level (100 μg/ml), TiO2 nanoparticles can be considered as rather harmless to humans under the investigated conditions.  相似文献   

17.
ZnS纳米微粒的形貌结构对其光学特性的影响   总被引:7,自引:0,他引:7  
报道在聚乙烯醇(PVA)膜上采用离子络合法镶嵌的ZnS纳米微粒的形貌结构与光学特性。透射电子显微镜结果表明,在聚乙烯醇膜中的ZnS纳米微粒分布比较均匀,粒径可控制在2-7nm的范围内;电子衍射分析表明,ZnS纳米微粒具有类似于β-ZnS体材料的晶体结构。室温下的光发射峰的位置在414~440nm范围内。着重分析了ZnS纳米形貌结构与其发射波长和强度之间的关系,并探讨了其不同的发射机理。  相似文献   

18.
Stakenborg  T.  Peeters  S.  Reekmans  G.  Laureyn  W.  Jans  H.  Borghs  G.  Imberechts  H. 《Journal of nanoparticle research》2008,10(1):143-152

In this work, the stability of DNA functionalized gold nanoparticles was examined in relation to their size, temperature, as well as the presence of mono- and bivalent ions. Furthermore, we report on the stabilizing effect of an additional post-functionalization with mercaptoalkanes, optionally bearing triethylene glycol (TEG) units. Although such so-called backfilling molecules are commonly used for planar gold surfaces, they have rarely been reported in combination with DNA-functionalized nanoparticles. Our results show that, conform the DLVO theory, smaller citrate-capped gold nanoparticles were more stable towards higher concentrations of salt. Citrate nanoparticles of 30 nm in size were only stable in sodium chloride concentrations up to ~0.05 M and up to 45 °C. The stability of these uncoated nanoparticles was even lower when bivalent salts were used (i.e. <2 × 10−4 M). Immobilization of DNA on these nanoparticles, on the other hand, improved the stability in salt solutions with at least one order of magnitude. The additional use of backfilling molecules stabilized the gold nanoparticles even further, without negatively affecting the DNA hybridization efficiency. DNA functionalization also had a positive impact on the thermal stability of the nanoparticles. Unfortunately, this beneficial effect was not observed after a subsequent backfilling step.

  相似文献   

19.
以聚乙烯醇 (PVA)、六偏磷酸钠为分散剂 ,采用溶胶法合成了 Cd S纳米胶体颗粒 ,制备出 Cd S及其包裹型纳米颗粒 PVA基复合膜。通过光子相干光谱粒度仪 (PCS)、紫外 -可见吸收光谱 (UV- VIS)、荧光光谱 (PL)对样品进行了初步表征。结果表明 ,Cd S纳米颗粒 PVA基复合膜的紫外 -可见吸收光谱有明显的蓝移现象 ,所发荧光主要由表面态发射引起 ;包裹型 PVA基复合膜所发荧光主要由带边发射引起  相似文献   

20.
Colorimetric silver nanoparticle sensor was developed for determination of aminoglycosides in milk. Silver nanoparticles were synthesized by using sodium borohydride as reducing agent and sodium dodecyl sulfate as stabilizer. Yellow color of silver turned into orange and red in proportion to the concentrations of analytes. Quantitative analyses were performed by using decrease in absorbance of silver nanoparticles at 394 nm. Linear ranges were 20–60 ng mL?1, 23–60 ng mL?1, and 60–100 ng mL?1 for gentamicin, tobramycin, and amikacin, respectively. The method was optimized in terms of pH, ionic strength, and time. This simple and validated method was applied to milk samples and pharmaceutical preparations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号