首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We construct a new minimal dilation of a dynamical system governed by a Bloch equation. In contrast to a dilation of the same dynamical system recently obtained by Varilly [13] our dilation satisfies a Markov property. This presents the first example of a Markov dilation for a non-commutative dynamical system which is not equivalent to a quasifree evolution. Furthermore the dilation turns out to be a generalizedK-system.  相似文献   

2.
The requirement is often made in non-equilibrium statistical mechanics that a transport equation should be derived as that which governs the subdynamics relative to a (small) part of a (large) conservative dynamical system close to equilibrium. We show that such a requirement on the Markovian relaxation of a 1/2-spin imposes that this process be described by a Bloch equation of a very specific form, which we call standard. We show that this reduced dynamics is quasi-free if, and only if, the relaxation time is maximally anisotropic.Research supported in part by NSF grant MCS 76-07286  相似文献   

3.
We present a finite difference method to solve a new type of nonlocal hydrodynamic equations that arise in the theory of spatially inhomogeneous Bloch oscillations in semiconductor superlattices. The hydrodynamic equations describe the evolution of the electron density, electric field and the complex amplitude of the Bloch oscillations for the electron current density and the mean energy density. These equations contain averages over the Bloch phase which are integrals of the unknown electric field and are derived by singular perturbation methods. Among the solutions of the hydrodynamic equations, at a 70 K lattice temperature, there are spatially inhomogeneous Bloch oscillations coexisting with moving electric field domains and Gunn-type oscillations of the current. At higher temperature (300 K) only Bloch oscillations remain. These novel solutions are found for restitution coefficients in a narrow interval below their critical values and disappear for larger values. We use an efficient numerical method based on an implicit second-order finite difference scheme for both the electric field equation (of drift-diffusion type) and the parabolic equation for the complex amplitude. Double integrals appearing in the nonlocal hydrodynamic equations are calculated by means of expansions in modified Bessel functions. We use numerical simulations to ascertain the convergence of the method. If the complex amplitude equation is solved using a first order scheme for restitution coefficients near their critical values, a spurious convection arises that annihilates the complex amplitude in the part of the superlattice that is closer to the cathode. This numerical artifact disappears if the space step is appropriately reduced or we use the second-order numerical scheme.  相似文献   

4.
We have considered the decay of an unstable state within the framework of the path-integral method, using a complete analogy between the Fokker-Planck equation and the Bloch equation for the temperature density matrix. A numerical solution of the problem permits the evolution of the system to be considered for arbitrary values of the parameters.  相似文献   

5.
方杰  韩冬梅  刘辉  刘昊迪  郑泰玉 《物理学报》2017,66(16):160302-160302
利用Majorana表象,从平均场模型和二次量子化模型两方面研究了非线性双模玻色子系统的动力学问题.得到了Majorana点在球面上的运动方程,分析了平均场模型和二次量子化模型之间的区别及其在Majorana点运动方程中的体现.研究了二次量子化模型中量子态在少体和多体情况下的动力学演化及其与平均场量子态的区别和联系.以平均场模型和二次量子化模型量子态之间的保真度和Majorana点之间的关联为手段,讨论了在不同玻色子间相互作用强度、不同玻色子数下量子态的演化及相应的自囚禁效应.  相似文献   

6.
Optimal state transfer of a single two-level system (TLS) coupled to an Ohmic boson bath via off-diagonal TLS-bath coupling is studied by using optimal control theory. In the weak system-bath coupling regime where the time-dependent Bloch-Redfield formalism is applicable, we obtain the Bloch equation to probe the evolution of the dissipative TLS in the presence of a time-dependent external control field. By using the automatic differentiation technique to compute the gradient for the cost functional, we calculate the optimal transfer integral profile that can achieve an ideal transfer within a dimer system in the Fenna-Matthews-Olson (FMO) model. The robustness of the control profile against temperature variation is also analyzed.  相似文献   

7.
The Majorana representation, which represents a quantum state by stars on the Bloch sphere, provides us an intuitive tool to study the quantum evolution in high dimensional Hilbert space. In this work, we investigate the second quantized model and the mean-field model for the interacting-boson system in the Majorana representation. It is shown that the motions of states in the two models are same in the linear case. Furthermore, the contribution of the nonlinear interaction to the star motions in the second quantized model can be expressed by a single star part which is equal to the nonlinear part of the equation for the star in mean-field model under large boson number limit and an extra part caused by the correlation between stars. These differences and relations can not only be reflected by the population differences between the two boson modes in the two models, but also lie with the differences between the continuous changes of the second quantized evolution with the nonlinear interacting strength and the critical behavior of the mean-field evolution which related to the self-trapping effect. The reason of the difference between the two models is also discussed by an effective Hamiltonian.  相似文献   

8.
U.M. Titulaer 《Physica A》1980,100(2):234-250
A formal analogy between the linear Chapman-Enskog procedure and a variant of the perturbation theory of degenerate levels, as presented by C. Bloch, is established. The analogy is than exploited to obtain closed expressions for the Chapman-Enskog special solutions to all orders in the perturbation parameter and for the evolution equations of the hydrodynamic variables, that determine the asymptotic solutions of the underlying evolution equation. The analogy can also be used to express the initial values of these “asymptotic equations” in terms of the initial value of the full evolution equation.  相似文献   

9.
The Bloch equation models the evolution of the state of electrons in matter described by a Hamiltonian. To model more physical phenomena we have to introduce phenomenological relaxation terms. The introduction of these terms has to conserve some positiveness properties. The aim of this paper is to review possible relaxation models and to provide insight into how to discretize them properly in view of numerical computations.  相似文献   

10.
We study resonance fluorescence from a two-level atom illuminated by coherent and incoherent light. Especially, we treat the case of an intense incoherent component which is broad band and chaotic in character.New insights into the phenomenon of resonance fluorescence are obtained by constructing certain analogies with the precession of a classical (Bloch) vector around a classical stochastic field. The analogies are based on a representation of the density operator of the two-level atoms as a diagonal mixture of directed angular momentum states.As long as the whole light field is an imposed one the weight function of the mixture mentioned above describes a random sequence of rotations of the Bloch vector and obeys a simple Fokker Planck equation. If, however, the incoherent component of the light field acts as a zero- or finite temperature heat bath, the equation of motion for the weight function is no longer a Fokker Planck equation. Nontheless, we find the exact solution and calculate the correlation functions relevant to a discussion of the spectrum and of antibunching effects.  相似文献   

11.
Adopting the standard mathematical framework for describing reduced dynamics, we derive two formal identities for the density operator of an open quantum system. Each of these is equivalent to the old Nakajima-Zwanzig equation. The first identity is local in time. It contains the inverse of the dynamical map which govern the evolution of the density operator. We indicate a time interval on which this inverse exists. The second identity constitutes a suitable starting point for going beyond the Markov approximation in a controlled way. On the basis of the Bloch equations we argue once more that in studying quantum dissipation one has to pay attention to the von Neumann conditions. In the Nakajima-Zwanzig equation we make the first Born approximation. The ensuing master equation possesses the correct weak-coupling limit. While proving this rather obvious but at the same time important statement, we elucidate the mathematical methods which underlie the weak-coupling limit. Moving to a two-dimensional Hilbert space, we find that both for short and for long times our approximate master equation respects the von Neumann conditions. Assuming exponential decay for correlation functions, we propose a physical limit in which the solutions for the density operator become Markovian in character. We confirm the well-known statement that, as seen from a macroscopic standpoint, the system starts from an effective initial condition. The approach to equilibrium is exponential. The accessory relaxation constants can differ from the usual Bloch parameters and by more than 50%.  相似文献   

12.
Geometric phase is investigated for optical free induction decay with a modified Bloch equation by establishing in connecting density matrices with nonunit vector ray in a complex projective Hilbert space. Under the limiting of pure state, our approach may give out the Berry phase and Aharonov and Anandan one. Furthermore, by comparing our approach with the kinematic one, we find that, after a suitable modification to the kinematic approach, both differences are very small for the Berry phase of mixed states in the optical free induction decay under the case of quasicyclic evolution.  相似文献   

13.
The purpose of this study was to demonstrate a generalized equation for describing the magnetization in spoiled gradient-echo (SPGR) imaging in which the in-pulse relaxation and magnetization transfer (MT) effects are taken into account. First, the time-dependent Bloch equations for the two-pool exchange model with MT effect were reduced to an inhomogeneous linear differential equation, and then a simple equation was derived to solve it using a matrix operation. Second, the equations describing the magnetization before and after the radiofrequency (RF) pulse were derived based on the above solution for the RF-pulse excitation and evolution phases. Finally, a generalized equation describing the steady-state magnetization was derived. The validity of this equation was investigated by comparing with the transverse magnetization obtained by the regular Ernst equation and analytical solution in which the in-pulse transverse relaxation is considered. When the same assumption was made in our method, there were good agreements between them, indicating the validity of our method. The in-pulse transverse and longitudinal relaxations decreased the transverse magnetization compared to the case in which these effects were neglected, whereas MT increased it. In conclusion, we derived a generalized equation for describing the magnetization in SPGR imaging. This equation will provide a suitable basis for understanding the signal intensity in SPGR imaging and/or T1 measurement using an SPGR sequence in cases in which the effect of in-pulse relaxation and/or MT cannot be neglected.  相似文献   

14.
《Physics letters. A》2020,384(25):126596
We present a new scheme for realizing Bloch oscillations and Wannier-Stark ladder based on a lattice of coupled LC circuits. By converting the second order dynamical ODEs of the system into a first order Schrödinger-like equation, we propose an equivalent tight binding Hamiltonian to describe the circuit. We show that a synthesized electric field is produced by introducing a frequency mismatch into the resonant frequency of the adjacent LC resonators. The Wannier-Stark modes are the normal modes of the circuit and the Bloch oscillations can be observed in a coupled LC lattice. By addition of coupling capacitors between nodes of the circuit, we study the Bloch oscillation in the presence of long-range couplings. We also show that the circuit converts to a transmission line simulating synthetic electric fields in the continuum limit. The coupled LC circuit is, in some sense, amongst the simplest physical systems exhibiting Bloch oscillation and Wannier-Stark Ladder.  相似文献   

15.
Berry phase of mixed state is investigated for modified Bloch equation with constant terms, which was used to explain sidebands in the spectrum of fluorescent light. The results show that for the physical phenomenon of sidebands, the Berry phases under the quasicyclic evolution exhibit as a geometric phase transition, where the transition point and region depend fully on the dynamics of population inversion and mixed degree. We find that, furthermore, the transition position is correlated to photon number. Thus the open quantum system preserves indeed a memory of its evolution in terms of the Berry phase, which may provide another clue for looking for devices of quantum memory in terms of geometric sideband approach.  相似文献   

16.
We investigate the asymptotic behavior of solutions to a kinetic equation describing the evolution of particles subject to the sum of a fixed, confining, Hamiltonian, and a small, time-oscillating, perturbation. The equation also involves an interaction operator which acts as a relaxation in the energy variable. This paper aims at providing a classical counterpart to the derivation of rate equations from the atomic Bloch equations. In the present classical setting, the homogenization procedure leads to a diffusion equation in the energy variable, rather than a rate equation, and the presence of the relaxation operator regularizes the limit process, leading to finite diffusion coefficients. The key assumption is that the time-oscillatory perturbation should have well-defined long time averages: our procedure includes general “ergodic” behaviors, amongst which periodic, or quasi-periodic potentials only are a particular case.  相似文献   

17.
S.M. Deshpande 《Physica A》1975,80(3):287-299
Rae and Davidson have found a striking connection between the averaging method generalised by Kruskal and the diagram technique used by the Brussels school in statistical mechanics. They have considered conservative systems whose evolution is governed by the Liouville equation. In this paper we have considered a class of dissipative systems whose evolution is governed not by the Liouville equation but by the last-multiplier equation of Jacobi whose Fourier transform has been shown to be the Hopf equation. The application of the diagram technique to the interaction representation of the Jacobi equation reveals the presence of two kinds of interactions, namely the transition from one mode to another and the persistence of a mode. The first kind occurs in the treatment of conservative systems while the latter type is unique to dissipative fields and is precisely the one that determines the asymptotic Jacobi equation. The dynamical equations of motion equivalent to this limiting Jacobi equation have been shown to be the same as averaged equations.  相似文献   

18.
This paper proposes a solution to Bloch NMR flow equations in biomedical fluid dynamics using a new set of real polynomials. In fact, the authors conjugated their efforts in order to take benefit from similarities between independent Bloch NMR flow equations yielded by a recent study and the newly proposed characteristic differential equation of the m-Boubaker polynomials. The main goal of this study is to establish a methodology of using mathematical techniques so that the accurate measurement of blood flow in human physiological and pathological conditions can be carried out non-invasively and becomes simple to implement in medical clinics. Specifically, the polynomial solutions of the derived Bloch NMR equation are obtained for use in biomedical fluid dynamics. The polynomials represent the T2-weighted NMR transverse magnetization and signals obtained in terms of Boubaker polynomials, which can be an attractive mathematical tool for simple and accurate analysis of hemodynamic functions of blood flow system. The solutions provide an analytic way to interpret observables made when the rF magnetic fields are designed based on the Chebichev polynomials. The representative function of each component is plotted to describe the complete evolution of the NMR transverse magnetization component for medical and biomedical applications. This mathematical technique may allow us to manipulate microscopic blood (cells) at nano-scale. We may be able to theoretically simulate nano-devices that may travel through tiny capillaries and deliver oxygen to anemic tissues, remove obstructions from blood vessels and plaque from brain cells, and even hunt down and destroy viruses, bacteria, and other infectious agents.  相似文献   

19.
We investigate the asymptotic behavior of solutions to a kinetic equation describing the evolution of particles subject to the sum of a fixed, confining, Hamiltonian, and a small time-oscillating perturbation. Additionally, the equation involves an interaction operator which projects the distribution function onto functions of the fixed Hamiltonian. The paper aims at providing a classical counterpart to the derivation of rate equations from the atomic Bloch equations. Here, the homogenization procedure leads to a diffusion equation in the energy variable. The presence of the interaction operator regularizes the limit process and leads to finite diffusion coefficients. AMS Subject classification: 74Q10, 35Q99, 35B25, 82C70  相似文献   

20.
We consider the Helmholtz equation in an unbounded periodic media perturbed by an unbounded defect whose structure is compatible with the periodicity of the underlying media. We exhibit a method coupling Dirichlet-to-Neumann maps with the Lippmann–Schwinger equation approach to solve this problem, where the Floquet–Bloch transform in the direction of the defect plays a central role. We establish full convergence estimates that makes the link between the rate of decay of a function and the good behavior of a quadrature rule to approximate the inverse Floquet–Bloch transform. Finally we exhibit a few numerical results to illustrate the efficiency of the method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号