首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
Although aryl(trifluoromethyl)diazirines have achieved great popularity in photoaffinity labeling applications, the properties of the corresponding carbenes have not been as widely explored. Here, low-temperature matrix-isolation spectroscopy and reactivity studies indicate that in contrast to m-methoxyphenyl(trifluoromethyl)carbene and most known aryl(CF(3))carbenes, the para isomer is a ground-state singlet rather than triplet. DFT calculations support these results as well as the notion that the p-CH(3)O group stabilizes the singlet carbene via resonance. These results may have relevance to the wide range of substituted aryl(CF(3))diazirines in photoaffinity applications.  相似文献   

2.
The cross-coupling of aryl tosylates with amines and anilines was accomplished by using a Ni-based catalyst system from the combination of Ni(II)-(sigma-aryl) complexes/N-heterocyclic carbenes (NHCs). The feature, scope, and limitation of this reaction are disclosed.  相似文献   

3.
Itakura H  Tomioka H 《Organic letters》2000,2(19):2995-2997
The title carbenes where aryl groups are phenyl, 2,4, 6-trimethylphenyl, and octahydro-1,4:5,8-di(ethano)anthryl were generated for the first time by irradiation of the corresponding diazo precursors and fully characterized by ESR in a rigid matrix at low temperature. It has been demonstrated that anthryl groups can act as excellent reservoirs for the unpaired electrons as well as relatively effective kinetic protectors for carbene.  相似文献   

4.
Palladium-catalyzed coupling reactions of aryl chlorides   总被引:6,自引:0,他引:6  
Collectively, palladium-catalyzed coupling reactions represent some of the most powerful and versatile tools available to synthetic organic chemists. Their widespread popularity stems in part from the fact that they are generally tolerant to a large number of functional groups, which allows them to be employed in a wide range of applications. However, for many years a major limitation of palladium-catalyzed coupling processes has been the poor reactivity of aryl chlorides, which from the standpoints of cost and availability are more attractive substrates than the corresponding bromides, iodides, and triflates. Traditional palladium/triarylphosphane catalysts are only effective for the coupling of certain activated aryl chlorides (for example, heteroaryl chlorides and substrates that bear electron-withdrawing groups), but not for aryl chlorides in general. Since 1998, major advances have been described by a number of research groups addressing this challenge; catalysts based on bulky, electron-rich phosphanes and carbenes have proved to be particularly mild and versatile. This review summarizes both the seminal early work and the exciting recent developments in the area of palladium-catalyzed couplings of aryl chlorides.  相似文献   

5.
The cathodic reduction of some aryl halides ArX (1-naphthyl halides NpI and NpBr, iodo benzene and bromobenzene PhI and PhBr taken as model substrates) was achieved essentially in propylene carbonate (PC) considered for its high dielectric permittivity. Different electrode materials such as copper, silver, palladium, silver palladium alloy and nickel were used. Such conditions permit the activation of the C–X bond by metal (the step featuring similarity with Ullmann's reaction). Electron transfer to organometallic intermediates generated at the metal interface activates the formation of Ar–Ar linkages often in good yields, especially in the case of aryl iodides.  相似文献   

6.
Protonated versions of N-heterocyclic carbenes (NHC,H+) are classically prepared by closing the ring through the introduction of the CH+ fragment. Here we report a totally different synthetic approach, which can be viewed as the addition of a 1,3-diazaallyl anion to a compound featuring two leaving groups (hereafter named “di-electrophile”). Using 1,3- and 1,4-dibromides, six- and seven-membered NHC,H+s have been prepared in good yields. Similarly, with 1,3,2-dioxathiolane-2,2-dioxide as a di-electrophile, imidazolidinium salts were obtained. To illustrate its broad scope of application, this synthetic route has been expanded to the preparation of protonated cyclic amino alkyl carbenes (CAACs) and amino thio carbenes, using 1-aza-allyl and 1,3-azathio-allyl anions, respectively.  相似文献   

7.
The reactivity of alkynyl and enynyl Fischer carbene complexes towards 8‐azaheptafulvenes is examined. Alkynyl carbenes 1 a – f undergo regioselective [8+2] heterocyclization with 8‐aryl‐8‐azaheptafulvenes 2 a , b providing cycloheptapyrroles 3 and 4 with metal carbene or ester functionality at C3. Moreover, consecutive cyclization reactions are involved when enynyl carbenes are used. Thus, the cyclopenta[b]pyrrole framework 7 is formed by the consecutive [8+2] cyclization and cyclopentannulation reactions. The initially formed cyclopentannulation adduct can be intercepted through a Diels–Alder reaction with classic dienophiles to afford increasing structural complexity (compounds 8 and 9 ). More importantly, the construction of the indole skeleton is accomplished with a high degree of substitution and functionalization (compounds 11 – 15 ) by a one‐pot sequence that involves [8+2] cyclization, R? NC or CO insertion, and ring closure.  相似文献   

8.
[reaction: see text] New methods for the palladium-catalyzed cyanation of aryl and heteroaryl chlorides have been developed, featuring sterically demanding, electron-rich phosphines. Highly challenging electron-rich aryl chlorides, in addition to electron-neutral and electron-deficient substrates, as well as nitrogen- and sulfur-containing heteroaryl chlorides can all undergo efficient cyanation under relatively mild conditions using readily available materials. In terms of substrate scope and temperature, these methods compare very favorably with the state-of-the-art cyanations of aryl chlorides.  相似文献   

9.
We describe a systematic study of the scope and relationship between ligand structure and activity for a highly efficient and selective class of catalysts containing sterically hindered chelating alkylphosphines for the amination of heteroaryl and aryl chlorides, bromides, and iodides. In the presence of this catalyst, aryl and heteroaryl chlorides, bromides, and iodides react with many primary amines in high yields with part-per-million quantities of palladium precursor and ligand. Many reactions of primary amines with both heteroaryl and aryl chlorides, bromides, and iodides occur to completion with 0.0005-0.05 mol % catalyst. A comparison of the reactivity of this catalyst for the coupling of primary amines at these loadings is made with catalysts generated from hindered monophosphines and carbenes, and these data illustrate the benefits of chelation. Studies on structural variants of the most active catalyst indicate that a rigid backbone in the bidentate structure, strong electron donation, and severe hindrance all contribute to its high reactivity. Thus, these complexes constitute a fourth-generation catalyst for the amination of aryl halides, whose activity complements catalysts based on monophosphines and carbenes.  相似文献   

10.
Nucleophilic N-heterocyclic carbenes have been conveniently used as catalyst modifiers in amination reactions involving aryl chlorides, aryl bromides, and aryl iodides with various nitrogen-containing substrates. The scope of a coupling process using a Pd(0) or Pd(II) source and an imidazolium salt in the presence of a base, KO(t)Bu or NaOH, was tested using various substrates. The Pd(2)(dba)(3)/IPr.HCl (1, IPr = 1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene) system presents the highest activity with respect to electron-neutral and electron-rich aryl chlorides. The ligand is also effective for the synthesis of benzophenone imines, which can be easily converted to the corresponding primary amines by acid hydrolysis. Less reactive indoles were converted to N-aryl-substituted indoles using as supporting ligand the more donating SIPr.HCl (5, SIPr = 1,3-bis(2,6-diisopropylphenyl)-4,5-dihydroimidazol-2-ylidene). The Pd(OAc)(2)/SIPr.HCl/NaOH system is efficient for the N-arylation of diverse indoles with aryl bromides. The general protocol developed has been applied successfully to the synthesis of a key intermediate in the synthesis of an important new antibiotic. Mechanistically, palladium-to-ligand ratio studies strongly support an active species bearing one nucleophilic carbene ligand.  相似文献   

11.
Palladium-catalyzed couplings of aryl bromides with N-tert-butylhydrazones as acyl anion equivalents to form aryl ketones are reported. The coupling process occurs at the C-position of hydrazones to form N-tert-butyl azo compounds. Isomerization of these azo compounds to the corresponding hydrazones, followed by hydrolysis, gave the desired mixed alkyl aryl ketones. The selectivity of C- versus N-arylation was strongly influenced by the substituent on nitrogen. Arylation at carbon occurred with N-tert-butylhydrazones, whereas N-arylation occurred with N-arylhydrazones. The arylation of hydrazones containing primary and secondary alkyl groups, as well as aryl groups, gave the desired ketones in good yields after hydrolysis. Functional groups on the aromatic ring, such as alkoxy, cyano, trifluoromethyl, carboalkoxy, carbamoyl, and keto groups, were tolerated. This reaction likely occurs by C-C bond-forming reductive elimination from an intermediate containing an eta1-diazaallyl ligand.  相似文献   

12.
A number of para-substituted chloro(aryl)carbenes are generated within the cavities of a series of dry alkali metal cation-exchanged zeolites (LiY, NaY, KY, RbY, and CsY) upon laser flash photolysis of the corresponding diazirine precursor. The absolute reactivity of the chloro(aryl)carbene is found to be strongly dependent on both the nature of the electron-donating and -withdrawing properties of the aryl substituent and the nature of the zeolite charge-balancing cations. The results strongly suggest that two opposing mechanisms for capture of the carbene can occur depending on whether the zeolite framework behaves as a nucleophilic reagent or an electrophilic reagent in its reaction with the carbene center. Hammett relationships for the decay of the carbene as a function of aryl substituent and zeolite counterion versus the sigma+ substituent parameter support a change in mechanism as the carbene center toggles between being electron poor and electron rich. For the electron-poor chloro(4-nitrophenyl)carbene, a framework adduct is proposed upon reaction of the nucleophilic [Si-O-Al]- bridge with the carbene center, and for the electron-rich chloro(4-methoxyphenyl)carbene, an adduct with the tight Li+ cation is proposed.  相似文献   

13.
Samarium(II)-mediated spirocyclization by intramolecular addition of aryl radicals onto an aromatic ring was achieved by the reaction of N-(2-iodophenyl)-N-alkylbenzamides with SmI2 in the presence of HMPA, yielding spirocyclic indolin-2-one derivatives. The ether congeners afford spirocyclic benzofuran derivatives in moderate yields by aryl radical addition onto a benzene ring without having an electron-withdrawing group. The reaction with other aryl groups such as naphthalene and indole rings is also described.  相似文献   

14.
Direct asymmetric aldol reaction of aryl ketones with aryl aldehydes catalyzed by chiral metal complex is reported for the first time herein. Two novel semicrown chiral ligands 1a and 1b were synthesized from (S)- and (R)-BINOL, respectively, and then employed to catalyze the direct asymmetric aldol addition of aryl ketones to aryl aldehydes. Introduced with 2.0 equiv of diethylzinc, 1b had higher enantioselectivity than 1a. Up to 97% yield and up to 80% enantioselectivity were achieved.  相似文献   

15.
A concise total synthesis of PDE-I and -II featuring copper-mediated double aryl amination with the combination of CuI, CsOAc, and Cs2CO3 is described. The highly substituted pyrroloindole skeleton was constructed by a one-pot five-step sequence including double aryl amination, β-elimination, deprotection of a Cbz group, and unexpected formation of an indole via removal of an Ns group followed by rearomatization. The undesired elimination of the protecting group (Ns group) was hampered by using the Boc group as a protecting group in the second-generation synthesis, which excluded the reduction of the indole required in the first-generation synthesis.  相似文献   

16.
Bromination has been examined for a series of 3-arylsydnones (1) with electron donors (dimethyl to dimethoxy) on the aryl ring. In no example was exclusive aryl ring bromination observed, however, exclusive sydnone ring bromination could be realized in every case. For two dimethoxyphenyl examples both aryl and sydnone ring bromination occurred.  相似文献   

17.
New synthetic routes to (NHC)copper-trifluoroacetate and -chlorodifluoroacetate complexes were developed (NHC = N-heterocyclic carbenes) so baseline reactivity patterns could be established for the decarboxylative trifluoromethylation of organic halides. In the presence of aryl halides, loss of CO2 from these new precursors occurred at 160 °C concurrent with the formation of aryl-CF3.  相似文献   

18.
Cyclic (amino)(aryl)carbenes (CAArCs) result from the replacement of the alkyl substituent of cyclic (alkyl)(amino) carbenes (CAACs) by an aryl group. This structural modification leads to enhanced electrophilicity of the carbene center with retention of the high nucleophilicity of CAACs, and therefore CAArCs feature a small singlet–triplet gap. The isoindolium precursors are readily prepared in good yields, and deprotonation at low temperature, in the presence of [RhCl(cod)]2 and [(Me2S)AuCl] lead to air‐stable rhodium and gold CAArC‐supported complexes, respectively. The rhodium complexes promote the [3+2] cycloaddition of diphenylcyclopropenone with ethyl phenylpropiolate, and induce the addition of 2‐vinylpyridine to alkenes by CH activation. The gold complexes allow for the catalytic three‐component preparation of 1,2‐dihydroquinolines from aniline and phenyl acetylene. These preliminary results illustrate the potential of CAArC ligands in transition‐metal catalysis.  相似文献   

19.
Heats of formation, atomic charges, and geometries of some 110 structures involving substituted singlet and triplet phenyl and 4,4-dimethyl-1,4-dihydronaphthalene carbenes and the corresponding diazomethanes were calculated by MINDO/3, MNDO, AM1, and PM3 semiempirical molecular orbital methods. The singlet-triplet gaps for AM1 and PM3 calculations for the para derivatives in both systems have been successfully correlated with Brown σ+ constants. Good correlations with σ+ were found for the charges on the carbenic centers of the singlets as well as with the energy barrier for rotation of the aryl group about the C-C single bond in substituted singlet phenylcarbenes. Comparisons of these results with experimental data indicate that AM1 and PM3 are much better than MNDO and MINDO/3 in predicting the intrinsic substituent effects in singlet carbenes.  相似文献   

20.
Exclusive aryl ring nitration of a series of 3-arylsydnones 1 with electron donors (di- or tri-methyl) on the aryl ring is reported.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号