首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
有机硅氧烷聚合成硅油和硅橡胶所用的瞬时催化剂在完成聚合后,适当升高温度即可分解,失去催化活性,否则催化剂的存在会在升温时引起高聚物的分解,目前均以四甲基氢氧化铵为瞬时催化剂,其受热(约130℃)后可分解生成甲醇和三甲胺:  相似文献   

2.
Kaminsky等 [1,2 ] 用二茂基 ( Cp,Ind,Flu)过渡金属 ( Ti,Zr和 Hf)化合物 /MAO催化剂催化丁烯 - 1聚合 ,得到间规 -等规或间规 -等规 -无规的混合物 ,聚合物的分子量为 5 0 0 0 0至 1 5 0 0 0 0 .Rossi[3] 用( CH3) 2 Si( H4 Ind) 2 Zr Cl2 /MAO研究了丁烯 - 1的等规聚合 ,产物分子量仅 2 0 0 0左右 .林尚安等[4 ,5] 采用单茂钛催化剂 Cp* Ti( OBz) 3/MAO催化丁烯 - 1聚合 ,产物为立体多嵌段聚丁烯 - 1 .但目前尚未见到有关采用茂金属催化剂催化丁烯 - 1聚合制备高分子量无规弹性体聚丁烯 - 1的报道 .我们用单茂钛 Cp* Ti( OC…  相似文献   

3.
α-二亚胺镍/Cp*TiCl3复式催化剂制备双峰长支链聚乙烯   总被引:4,自引:0,他引:4  
合成了一种后过渡金属镍化合物 [二 N ,N′ (α 萘基 ) 2 ,3 丁二亚胺镍二溴化物 ][C1 0 H7—NC(CH3)C(CH3)N—C1 0 H7]NiBr2 ,此化合物在MAO活化下催化乙烯聚合能得到含有末端双键的低分子量聚乙烯 ,即长链α 烯烃 .此化合物和一种单茂钛化合物五甲基环戊二烯基三氯化钛 (Cp TiCl3)所组成的复式催化剂 ,用MAO活化后两种主催化剂具有良好协同作用 ,能使单一乙烯聚合制备出双峰型长支链的聚乙烯 .1 3C NMR表明由此复式催化剂制得的聚乙烯不但含有甲基、乙基、丙基、丁基、戊基支链而且还含有相当多的长支链 (支链长度大于或等于 6 ) .催化剂的摩尔比 (Ni Ti)、Al(MAO) (Ni+Ti)摩尔比和聚合温度等聚合条件对催化活性及聚合物的结构与性能有明显影响 .GPC测试表明所得到的支化聚乙烯分子量呈双峰分布 .  相似文献   

4.
研究了CuCl/五甲基二亚乙基三胺(PMDETA)催化的甲基丙烯酸2-N,N-二甲氨基乙酯(DMAEMA)与甲基丙烯酸甲酯(MMA)在氧气存在下的氧化共聚合,通过改变单体配比、催化剂浓度和反应温度对实验条件进行研究.结果显示,在本实验中的单体配比([DMAEMA]∶[MMA]=10∶0~5∶5)、催化剂浓度([CuCl/PMDETA3]=3.1×10-5 mol/L~6×10-3 mol/L)和反应温度(30~80℃)下,聚合均可以顺利发生,而且聚合过程中单体转化率和所得聚合物的分子量都随着反应进行而增加,且分子量呈现宽分布.1H-NMR结果显示所得聚合物中含有DMAEMA和MMA的单体单元.DSC结果显示所得聚合物是一个部分相容体系.利用此方法所得的PDMAEMA进行MMA的原子转移自由基聚合(ATRP)扩链过程则证实,所得聚合物具有C—Cl末端官能团.由此可以认为,在以上过程中,O2先将CuCl氧化成[Cu(Ⅱ)Cl]+,[Cu(Ⅱ)Cl]+再将二甲胺基氧化成N—CH2.自由基,N—CH2.自由基与[Cu(Ⅱ)Cl]+构成反向ATRP体系,从而得到以C—Cl为末端的聚合物.  相似文献   

5.
合成了6种单茂稀土催化剂Cp’LnR2(THF)n(其中,Cp’=C5H5,C5Me4SiMe3;R=CH2C6H4NMe2-o,CH2SiMe3;Ln=Sc,Y,Lu;n=0或1),并以[Ph3C][B(C6F5)4]为助催化剂,甲苯为溶剂,考察催化剂结构对丁二烯聚合活性,立体选择性,催化剂利用率以及聚合物分子量和分子量分布的影响.通过1H-NMR,13C-NMR,FTIR,GPC以及DSC对聚丁二烯进行表征,结果表明,当Cp’=C5H5,R=CH2C6H4NMe2-o,Ln=Sc,n=0时,催化剂(C5H5)Sc(CH2C6H4NMe2-o)2对丁二烯聚合活性最高,可达9600 kg-polymer/mol-Sc·h,催化剂利用率为45%,聚丁二烯顺-1,4结构含量在96%~98%之间,分子量分布窄,指数在1.3左右;以甲苯或氯苯作为聚合溶剂时,聚合活性最高,聚丁二烯分子量保持窄分布,在所有溶剂中聚丁二烯顺-1,4结构含量均达到96%以上;催化剂聚合活性随温度下降而降低,而聚合物分子量分布有变窄的趋势,温度对聚丁二烯立体选择性无明显影响;当[Bd]/[Sc]摩尔比从500增加到3000时,聚合反应1 min转化率均达到100%,聚丁二烯分子量呈可控线性增大,最高达44.6×104,且均保持聚合物窄分布.DSC谱图表明聚丁二烯Tg为-107℃,当升降温速率为10 K/min时,在-63℃和-8℃附近呈现出明显的冷结晶峰和熔融峰.  相似文献   

6.
以4种不同结构的α-二亚胺镍(Ⅱ)催化剂[(t-Bu)—N CH—CH N—(t-Bu)]NiBr2(C1),[C6H5—N C(Me)—C(Me)N—C6H5]NiBr2(C2),[(2,6-C6H3(Me)2)—N C(Me)—C·(Me)N—(2,6-C6H3(Me)2)]NiBr2(C3)和[(2,6-C6H3(i-Pr)2)—N C(An)—C(An)N—(2,6-C6H3(i-Pr)2)]NiBr2(An=acenaphthyl)(C4),在甲基铝氧烷(MAO)作用下,对甲基丙烯酸甲酯(MMA)进行催化聚合.以C2为模型催化剂系统研究了Al/Ni摩尔比、单体浓度、聚合温度、聚合时间和反应溶剂对催化活性及聚合物分子量的影响.在较适合的聚合条件(催化剂用量为1.6μmol,Al/Ni摩尔比为800,MMA浓度为2.9 mol/L,甲苯为溶剂,聚合温度为60℃,聚合时间为4 h)下,讨论了催化剂结构对催化活性和聚合物分子量的影响.研究发现,催化剂C1~C3催化MMA聚合均得到富含间规结构的聚甲基丙烯酸甲酯(PMMA).催化剂结构中空间位阻增大导致催化活性降低,空间位阻最小的C1催化活性最高[达107.8 kg/(mol Ni·h)];而空间位阻最大的C4催化活性仅为7.8 kg/(mol Ni·h).催化剂结构中给电子效应增加有利于催化活性及聚合物分子量的增加.C2催化活性为62.5 kg/(mol Ni·h),所得聚合物的分子量为5.0×104;而具有较强给电子效应的C3催化活性达到96.9 kg/(mol Ni·h),并得到更高分子量的聚合物(7.6×104).  相似文献   

7.
以甲基铝氧烷(MAO)为助催化剂的茂金属催化剂虽然具有催化活性高、分子量分布窄、聚合物化学组成均匀等优点,但其极高的Al/Zr比和聚合物颗粒形态差等缺点限制了其工业化应用,因此对茂金属催化剂的负载化成为近年来的研究热点.在众多的载体中,球形MgCl2是研究得很少的一类载体,文献中曾采用先负载主催化剂茂金属配合物,聚合时再加入助催化剂MAO的方法[1],由于加入的MAO与主催化剂的络合能力很强,会使部分载上的主催化剂溶解下来,成为均相聚合[2,3],导致聚合物颗粒形态差,且粘釜现象严重.我们则采用相反的思路,即先将助催化剂MAO负载在球形MgCl2上,制得MgCl2/MAO,在聚合前再将MgCl2/MAO与Et[Ind]2ZrCl2混合陈化,并立即在少量烷基铝活化下引发乙烯聚合[4],实验结果表明,该催化剂聚合活性高、聚合物的颗粒形态好、且不粘釜,是一种新型的载体催化剂.由于烷基铝的加入可使催化剂的活性大幅度提高,所以本文将烷基铝也称作助催化剂,来研究其对该载体催化剂催化乙烯聚合的影响.  相似文献   

8.
单茂钛化合物Cp′TiL3(Cp′为 η5 环戊二烯基或取代 η5 环戊二烯基 ;L为卤素、氢、烃基、烃氧基等 )和甲基铝氧烷 (MAO)组成的催化剂催化苯乙烯聚合 ,表现出非常高的催化活性和间规立构选择性[1~ 3] .这类催化剂也可用于丙烯、丁烯等α 烯烃聚合 ,合成无规或立构嵌段聚合物[4~ 6] ;但用单茂钛 /MAO催化剂进行乙烯均聚合研究[7] 较少 .本文报道用三甲基铝 (TMA)含量不同的改性MAO(mMAO)作助化催剂激活 1 ,2 ,3,4,5 五甲基茂基三苄氧基钛 [Cp Ti(OBz) 3]催化乙烯均聚合 ,对聚合产物结构性能进行表征 ;发现…  相似文献   

9.
端丙烯酸酯基超支化聚(酯-胺)的结构分析及光固化   总被引:2,自引:1,他引:1  
近年来 ,具有树枝状结构的超支化聚合物因其独特的物理化学性质而得到广泛关注[1,2 ] .超支化聚合物主要采用 3种途径合成 ,( 1 )ABn(n >2 )型及潜ABn 型单体的聚合 ;( 2 )由A2 与Bn 型单体直接聚合 ;( 3)先由特定的单体对原位形成ABn型中间体后再聚合 .其中后两种方法可直接采用商业化原料 ,因此更具有实用价值 .目前 ,基于途径 ( 2 )已合成出超支化聚酰胺[3 ] 、聚醚[4] 、聚酰亚胺[5] 和共轭聚合物[6] 等 ,但该途径容易生成凝胶化产物 ,通过控制反应物浓度、在凝胶点之前停止反应等 ,可得到溶解型超支化产物 .由于超支化聚合物具有低…  相似文献   

10.
后过渡金属烯烃聚合催化剂研究进展   总被引:5,自引:0,他引:5  
张道  刘长坤  金国新 《分子催化》2002,16(5):390-399
烯烃在催化剂的作用下形成聚合物 .改变催化剂的结构 ,可以得到特定分子结构和特定性能的聚烯烃产物 ,因而催化剂的研究开发是聚烯烃升级换代的核心 .烯烃聚合催化剂的发展大致经历了 3个阶段 :Ziegler- Natta催化剂 -茂金属催化剂 -后过渡金属催化剂 .Ziegler[1]和 Natta[2 ]发现了用于各种 α-烯烃聚合的催化剂 ,并已作为主导技术应用于工业化大生产 . 2 0世纪 80年代初 ,Kaminsky等 [3~ 5] 发现 ,二氯二茂锆与烷基铝氧烷组成的体系(茂金属催化剂 )是一种高催化活性、高立体选择性、长寿命的催化剂 .茂金属催化剂的设计、合成和应用 ,…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号