首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
李忠明 《高分子科学》2013,31(2):211-217
Current-voltage electrical behavior of in situ microfibrillar carbon black (CB)/poly(ethylene terephthalate) (PET)/polyethylene (PE) (m-CB/PET/PE) composites with various CB concentrations at ambient temperatures was studied under a direct-current electric field. The current-voltage (I-V) curves exhibited nonlinearity beyond a critical value of voltage. The dynamic random resistor network (DRRN) model was adopted to semi-qualitatively explain the nonlinear conduction behavior of m-CB/PET/PE composites. Macroscopic nonlinearity originated from the interfacial interactions between CB/PET micro fibrils and additional conduction channels. Combined with the special conductive networks, an illustration was proposed to interpret the nonlinear I-V characteristics by a field emission or tunneling mechanism between CB particles in the CB/PET microfibers intersections.  相似文献   

2.
超高分子量聚乙烯(UHMWPE)具有优异的综合性能,本文采用凝胶结晶溶液方法制备了分别以碳纤维(CF)和镀镍碳纤维(NiCF)为导电填料,UHMWPE为基体的3个系列导电聚合物复合材料—UHMWPE/CF、UHMWPE/NiCF和UHMWPE/EMMA/CF复合体系,并分别对它们进行了室温伽马射线辐射处理,重点研究了这些材料的电性能和自发热性能,利用DSC、SEM、WAXS、DMA和体积膨胀等仪器进行了一系列测试表征。结果表明,NiCF作为导电填料时体系的逾渗阈值最低,为3vol%。伽马射线辐射处理不仅能有效提高材料的PTC效应,而且在合适的辐射剂量时也能有效提高材料的自发热性能。对材料介电性能的研究揭示了材料的交流电阻率与温度、频率的依赖关系。  相似文献   

3.
At the electric–thermal equilibrium state, the nonlinear conduction behaviors of high‐density polyethylene/acetylene carbon black composites crosslinked with electron‐beam irradiation have been studied in wide ranges of electric field and ambient temperature. Critical electric field E0.5 at the global electrical breakdown and the corresponding apparent resistivity are related to the intrinsic resistivity at given ambient temperatures. The relationship between the nonlinear conduction and the intrinsic positive temperature coefficient effect of resistivity is established by a discussion of E0.5 as a function of the macroscopic resistivity temperature coefficient. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 1979–1984, 2006  相似文献   

4.
The conduction behavior of composites of the anion-radical salt NaTCNQ (sodium 7,7,8,8-tetracyanoquinodimethanide) in poly(vinyl chloride) plasticized by polyurethane has been studied. TCNQ salt-polymer composites that have good moldability and flexibility are characterized by molecular or granular dispersion of the TCNQ salt in a polar polymer matrix. The conduction mode changes from one due to molecularly dispersed sites (CMDS) to one due to granularly dispersed sites (CGDS) with increasing NaTCNQ content. In the CMDS region, the predominant conduction is ionic; TCNQ anion-radicals migrate toward the anode under a dc biasing voltage and a high-resistivity layer is formed near the cathode. The fixation of TCNQ salt at sites in the polymer matrix is believed to be important for the stabilization of electronic conduction under a dc electric field. In the CGDS region, the conduction is electronic and the current-voltage characteristics of the composite are nonohmic, which indicates that carrier generation depends on the Poole-Frenkel effect.  相似文献   

5.
Nitrile butadiene rubber, NBR, structural foam of different apparent densities was obtained by using different concentrations of foaming agent, azodicarbonamide, ADC/K. The true stress-strain characteristics, in case of compression, of foamed samples after the application of cyclic stress-strain were measured. The effect of the cyclic stress-strain on strain energy density of ADC/K foaming agent-filled NBR rubber composites was studied. The mechanical parameters were found to depend on the foaming agent concentration and on the pre-cyclic fatigue number. Results also indicated that the strain energy decreased with filler concentration.The effects of the cyclic stress-strain on the conductivity of ADC/K foaming agent-filled NBR rubber composites were studied. The electrical properties were found to depend on the foaming agent concentration, the strain amplitude and the number of stress-strain cycles of pre-strain. This study was assisted by the current-voltage characteristics which were measured under the effect of different compression ratios: 0%, 5%, 10%, 15%, 20%, 25% and 30%. The free current carrier mobility and the equilibrium concentration of charge carriers in the conduction band were produced as functions of compressive strain. Results also indicate that there is a linear variation between pressure and conductivity for all samples, which means that these samples can be used as a pressure sensor.  相似文献   

6.
The equilibrium pressure-volume-temperature properties and thermoelastic behavior of kaolin-filled composites of the injection molding grade of high density polyethylene (HDPE) were studied in the temperature interval 423–473 K and in thepressure range 30–100 MPa. It was established that the HDPE melts in filled composites existed in a somewhat expanded, more compressible state. This effect was quantitatively accounted for by the increased number of external degrees of freedom derived from the Simha-Somcynsky equation of state. The effect of the coupling agent on thermal diffusivities and specific heat capacities of filled samples turned out negligibly small.This revised version was published online in November 2005 with corrections to the Cover Date.  相似文献   

7.
Polymer composites with metal oxide nanoparticles are emerging materials for use as insulation in electrical applications. However, the extensive interfacial surfaces and the presence of polar groups on the particle surfaces make these composites susceptible to water sorption. Water sorption kinetics were studied at 23 °C and different relative humidities (18–90%) for composites based on poly(ethylene-co-butyl acrylate) and aluminium oxide (?12 wt.%); the latter being in three different forms: uncoated and coated with either octyltriethoxysilane or aminopropyltriethoxysilane. The equilibrium water uptake increased linearly with increasing overall concentration of polar groups on the nanoparticle surfaces. Composites with well-dispersed nanoparticles showed Fickian diffusion (constant diffusivity and invariant boundary conditions) with a diffusivity that decreased with increasing filler content; the maximum factorial decrease in diffusivity was 300 with reference to that of the pristine polymer. This effect was most pronounced for composites with accessible polar groups on the particle surfaces, suggesting that water saturation of the composites is retarded by dual water sorption. Composites that contained a sizeable fraction of large nanoparticle agglomerates showed a two-stage sorption process: a rapid process associated with the saturation of the matrix phase and a slow diffusion process due to water sorption by the large nanoparticle agglomerates.  相似文献   

8.
A novel self-heating 3D printed continuous carbon fiber (CCF)/epoxy (EP) mesh for deicing was proposed. Because of electron migrating conduction and hopping conduction, the conductivity of CCF reached 131.3 S cm−1 at 25 °C and increased by 1.1%–148.4 S cm−1 at 200 °C, exhibiting a negative temperature coefficient (NTC) effect. Because of the electron conduction of CCF and uneven thermal expansion of the fiber/matrix components, the CCF/EP mesh had NTC and positive temperature coefficient (PTC) effects. After specific hot-cold cycles, the resistance stability of the printed mesh was confirmed. Compared to unprotected glass fiber-reinforced composite laminate, the CCF/EP mesh reinforcement decreased the deicing time by 85% and had a protective effect on the residual flexural strength and modulus, fiber-resin bonding, and internal voids. Excellent conductivity, resistance stability, and electric self-heating performance indicate that 3D printed CCF/EP mesh is a promising candidate for use in deicing.  相似文献   

9.
In this work we present the preparation of conductive polyethylene/carbon nanotube composites based on the segregated network concept. Attention has been focused on the effect of decreasing the amount of filler necessary to achieve low resistivity. Using high- and low-grade single-walled carbon nanotube materials we obtained conductive composites with a low percolation threshold of 0.5 wt.% for high-grade nanotubes, about 1 wt% for commercial nanotubes and 1.5 wt% for low-grade material. The higher percolation threshold for low-grade material is related to low effectiveness of other carbon fractions in the network formation. The electrical conductivity was measured as a function of the single-walled carbon nanotubes content in the polymer matrix and as a function of temperature. It was also found that processing parameters significantly influenced the electrical conductivity of the composites. Raman spectroscopy was applied to study single wall nanotubes in the conductive composites.  相似文献   

10.
Ablative nanocomposites based on nanoclay‐dispersed addition curable propargylated phenolic novolac (ACPR) resin, reinforced with chopped silica fiber, were investigated for their thermal response behavior under simulated heat flux conditions corresponding to typical atmospheric re‐entry conditions. Organically modified nanoclay (Cloisite 30B) was incorporated to different extents (1–10%) in the ACPR resin matrix containing silica fiber to form the composite. The composites displayed optimum mechanical properties at around 3 wt% of nanoclay loading. The resultant composites were evaluated for their ablative characteristics as well as mechanical, thermal and thermo‐physical properties. The reinforcing effect of nanoclay was established and correlated to the composition. The mechanical properties of the composites and its pyrolysed product improved at moderate nanoclay incorporation. Plasma arc jet studies revealed that front wall temperature is lowered by 20°C and that at backwall by 10–13°C for the 3 wt% nanoclay‐incorporated composites due to impedance by nanoclay for the heat conduction. Nanoclay diminished the coefficient of thermal expansion by almost 50% and also reduced the flammability of the composites. The trend in mechanical properties was correlated to the microstructural morphology of the composites. The nanomodification conferred better strength to the pyrolysed composites. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

11.
Rheological behavior was examined for biocomposites of rod‐like silk fibroin (SF) fiber and poly(ε‐caprolactone) (PCL) to investigate an effect(s) of the SF fiber network therein on the mechanical properties. At 160 °C where PCL was a homogeneous melt, linear viscoelastic tests revealed that the SF/PCL composites hardly relax to behave essentially as elastic solids (more precisely, plastic solids before yielding) at low frequencies. The corresponding equilibrium modulus G0 increased strongly with the SF volume fraction ?SF (G0 ~ ?) and was attributable to the elastic bending of the SF fibers incorporated in the network. The Doi‐Kuzuu model for non‐Brownian rods was modified for the SF/PCL composites by incorporating the rod–rod contact at equilibrium. The G0 calculated from this model was satisfactorily close to the data, in both ?SF dependence and magnitude, lending support to the assignment of the composite elasticity to the fiber bending. The storage modulus G′ measured under large‐amplitude oscillatory shear (LAOS) was smaller than the linear viscoelastic G′, and this difference between the linear and nonlinear moduli was enhanced for the composites with a larger SF content and at lower frequencies. This nonlinear effect was attributable to a decrease of the effective fiber–fiber contacts sustaining the elasticity under LAOS. Under steady shear, the SF/PCL composites exhibited nonlinear (plastic) flow behavior associated with the stress overshoot, and their apparent viscosity was comparable to/lower than the viscosity of neat PCL matrix. The overshoot became much less significant on application of a second shear immediately after the first shear, while the overshoot was partly recovered after a quiescent rest between the first and second shears. These nonlinear features were attributable to slippage between shear‐oriented fibers and PCL matrix. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 1957–1970, 2009  相似文献   

12.
以SiO2为成核中心,钛酸四丁酯为钛源,分别以多羟基化合物乙二醇、丙三醇、葡萄糖和聚乙烯醇为联接剂,采用水解沉淀法制备了碳掺杂和包覆的多孔SiO2/TiO2-xCx/C可见光响应型光催化剂。采用X-射线衍射(XRD)、透射电子显微镜(TEM)、X-射线光电子能谱(XPS)、傅里叶变换-红外光谱(FTIR)、比表面积(BET)和紫外-可见(UV-Vis)漫反射光谱对样品进行表征。对不同结构样品的形成机理进行了分析。以次甲基蓝(MB)溶液为模拟废水,对样品的吸附性能和可见光催化性能进行了评价。结果表明,多羟基化合物对材料的结构和性能有重要影响。碳的掺杂和包覆使材料的吸收光谱包含了整个可见光区,而多孔结构使材料的吸附性能得到提高。以聚乙烯醇为原料所得样品吸附性能最好,30 min内吸附率达到70%;而以丙三醇为原料所得样品具有最好的可见光催化性能,40 min内次甲基蓝的降解率达到95%。  相似文献   

13.
Composting technologies rely on standard methods for quality determination. The maturity of a compost is assayed by self-heating experiments in Dewar-vessels. The resulting maximum temperature is classified on a five-level scale. This study demonstrated systematic errors that might occur when assays are performed in Dewars of different size. The vessels were characterized as heat conduction calorimeters and the processes of biochemical decomposition and heat generation and autothermic effects (temperature) were evaluated quantitatively.This revised version was published online in November 2005 with corrections to the Cover Date.  相似文献   

14.
Ultra-high molecular weight polyethylene/iron composites were investigated. The specimens were obtained by pressing in a steel die and sintering at different temperatures. By means of porosimetry, microscopy, microhardness, density, and partial volumes of the components it is shown that there are no microcavities. The microhardness does not depend upon the weight % content of the metal in the composites. It also neither depends on the pressure nor the temperature of sintering. For low metal content within the composites, microhardness Mayer equations are linear. For high metal content the dependence is nonlinear. With the increasing of the iron content tensile strength weakly decreases. However, plane-strain compression, dimension steadiness, Vicat softening temperature, and tribometric characteristics of the composites are improved. It is shown that the polymer is a well-dispersive medium. The particles of the components have a good mechanical compatibility. The polymer wets the surface of the iron; this is probably connected with the surface oxidation of the metal particles.  相似文献   

15.
Combining biologic pretreatment with storage is an innovative approach for improving feedstock characteristics and cost, but the magnitude of responses of such systems to upsets is unknown. Unsterile wheat straw stems were upgraded for 12 wk with Pleurotus ostreatus at constant temperature to estimate the variation in final compositions with variations in initial moisture and inoculum. Degradation rates and conversions increased with both moisture and inoculum. A regression analysis indicated that system performance was quite stable with respect to inoculum and moisture content after 6 wk of treatment. Scale-up by 150× indicated that system stability and final straw composition are sensitive to inoculum source, history, and inoculation method. Comparative testing of straw-thermoplastic composites produced from upgraded stems is under way.  相似文献   

16.
The structure and the biosorption properties of fungal biomass of Aspergillus niger originated from citric acid fermentation industry was investigated. This waste biomass, produced in high quantity in carefully controlled industrial processes, has certain favourable characteristics that may be improved for its usefulness. In environmental chemistry, it is known for the removal of heavy metals cations. In this work, different alkaline treatments (1M NaOH/20°C/24 h and 10M NaOH/107°C/6 h) were used to evaluate the dependence of sorption properties of biomass on the cell wall composition. The biosorption was studied by the batch method, with the biomass concentration of 1 g/l, at pH 6. The adsorption of lead was more effective than that of cadmium. The biosorption capacity was evaluated using the biosorption isotherm derived from the equilibrium data. At pH 6, the maximmum lead biosorption capacity estimated with the Langmuir model was 93 mg/g dry biomass.  相似文献   

17.
The analytical treatment of a model considering the electrooxidation of p-porous silicon layers under galvanostatic conditions is able to give account of experimental facts such as the shape and location of the electroluminescence peak as well as of the spectral shift of the electroluminescence peak produced by oxidation. The proposed model considers electroluminescence to be the result of electron injection into the conduction band by an adsorbed intermediate produced by electrooxidation of the surface coverage with hydrogen or siloxene of the silicon nanocrystallites. The access of holes to the surface is made possible by low accumulation layer conditions and is the rate determining step in the electroluminescence mechanism. In this way it is possible to give a satisfactory explanation to the shift towards the blue experimented by the electroluminiscence emission maximum as a consequence of electrooxidation.  相似文献   

18.
Vibrational spectra of finely divided amorphous CsHSO4,Cs5H3(SO4)4 · H2O, and composites based on these are measured and analyzed. An analysis of the spectra indicates the occurrence of substantial changes in the system of hydrogen bonds and in the spectral range of the sulfate group of acid sulfates in the composites. Structural dynamics of the SO4 tetrahedrons is in full conformance with protonic conduction and the data of x-ray diffraction analyses accompanied by differential scanning calorimetry. It is shown that mobility of protons in the composites increases. A mechanism of the formation of the composites and their conduction is proposed.__________Translated from Elektrokhimiya, Vol. 41, No. 5, 2005, pp. 640–645.Original Russian Text Copyright © 2005 by Ponomareva, Lavrova, Burgina.  相似文献   

19.
In the present study, the interfacial behavior of overmolded hybrid fiber reinforced polypropylene composites (hybrid composites) in the working temperature range from 23 °C to 90 °C was studied by experimental and constitutive methods. Monotonic and cycle loading-unloading single-lap-shear tests were employed to determine the interfacial properties of hybrid composites. The experimental results show that both interfacial shear strength and shear stiffness decrease with increasing working temperature. A regression function was adopted to evaluate the decaying degree of interfacial properties with increasing working temperature. The shear stress-displacement relationship under monotonic loading exhibits nonlinear behavior after an initial elastic region. The envelope lines of shear stress-displacement of hybrid composites under cyclic loading indicate that the nonlinearity in the curve is caused by the plastic deformation of polypropylene in the interphase region. A constitutive model was built to describe the nonlinear shear stress-displacement relation of hybrid composites at different working temperatures. A full suite of temperature-dependent plastic parameters in the model was obtained from cyclic loading-unloading tensile tests. The predicted shear stress–displacement curves agreed well with experimental results from different working temperatures. In addition, the failure mode of hybrid composites varied with working temperature.  相似文献   

20.
The microstructure, dielectric response, and nonlinear current-voltage properties of Sr2+-doped CaCu3Ti4O12/CaTiO3 (CCTO/CTO) ceramic composites, which were prepared by a solid-state reaction method using a single step from the starting nominal composition of CCTO/CTO/xSrO, were investigated. The CCTO and CTO phases were detected in the X-ray diffraction patterns. The lattice parameter increased with increasing Sr2+ doping concentration. The phase compositions of CCTO and CTO were confirmed by energy-dispersive X-ray spectroscopy with elemental mapping in the sintered ceramics. It can be confirmed that most of the Sr2+ ions substituted into the CTO phase, while some minor portion substituted into the CCTO phase. Furthermore, small segregation of Cu-rich was observed along the grain boundaries. The dielectric permittivity of the CCTO/CTO composite slightly decreased by doping with Sr2+, while the loss tangent was greatly reduced. Furthermore, the dielectric properties in a high-temperature range of the Sr2+-doped CCTO/CTO ceramic composites can be improved. Interestingly, the nonlinear electrical properties of the Sr2+-doped CCTO/CTO ceramic composites were significantly enhanced. The improved dielectric and nonlinear electrical properties of the Sr2+-doped CCTO/CTO ceramic composites were explained by the enhancement of the electrical properties of the internal interfaces.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号