首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nanometer-sized TiO(2) island structure on the platy hydroxyapatite nanocrystals (HAp) has been accomplished by two-step emulsion process. At the first step, platy HAp nanocrystals, of which size was in the range of 70-200 nm after heat-treatment at 1078 K for 1 h, were prepared using the W/O emulsion system. Before the second step, HAp nanocrystals were immersed in NaH(2)PO(4) solution for the formation of hydroxyl group on their surface. In the following, titanium tetraisopropoxide reacted with the hydroxyl group of HAp surface to form TiO(2) nanoparticles on the surface of HAp nanocrystals, which were dispersed in the micrometer-sized methanol droplets of polyethylene cetylether-cyclohexane mixture (methanol/oil emulsion). The resulting hydroxyapatite nanocrystals loaded with TiO(2) nanoparticles showed the high photocatalytic activity comparing to the commercial TiO(2) catalyst.  相似文献   

2.
In the present paper, we describe the preparation of hybrid particles consisting of polymeric core with deposited hydroxyapatite (HAp) nanocrystals. Polystyrene submicron particles modified by β-diketone groups have been used as templates for the growth of HAp. Hybrid particles with HAp nanocrystal content between 7 and 50 wt% have been prepared. Microscopy studies indicate that hybrid particles exhibit “raspberry” morphology, and HAp nanoparticles are not homogeneously distributed on the polymer particle surface. The increase in the HAp content on the polymer particle surface reduces the colloidal stability of the hybrid particles because of the vanishing of the surface charge.  相似文献   

3.
二元醇改性密胺甲醛树脂包覆红磷   总被引:1,自引:0,他引:1  
马千  刘增杰  梁轶  董天贺  韩福芹 《应用化学》2015,32(10):1153-1158
用乙二醇和1,4-丁二醇对密胺甲醛树脂(MF)包覆红磷(MFRP)进行了化学改性,并对改性前后MFRP的磷化氢释放情况进行了比较。 在模拟材料加工条件下,纯红磷(RP)的磷化氢释放量为44.51 mg/L,MFRP磷化氢释放量降低到24.13 mg/L,而二元醇改性包覆红磷,磷化氢释放量降低到8.05 mg/L。 改性包覆效果显著。 用傅里叶红外光谱(FTIR)表征改性前后MFRP的结构,证实改性剂成功介入树脂结构中。 热重分析(TG/DTG)结果表明,改性后,MFRP的初始分解温度由未改性的264 ℃降到182 ℃,最大失重速率由11%/min下降到4.1%/min,800 ℃时,改性前后的MFRP残留量相同,均为11%。  相似文献   

4.
We describe the effect of surface-modified hydroxyapatite (HAp) nano-crystals on biocompatibility of a new-type nanocomposite consisting of poly(ε-caprolactone) (PCL) and HAp. Surface-modified hydroxyapatite (HAp) nano-crystals were prepared by chemically grafting PCL on HAp surfaces. Time-dependent phase monitoring indicated that PCL surface-grafting contributed to the enhanced dispersion of HAp at nano-level in the PCL solution. The protein adhesion and cell experiments showed that the presence of PCL-grafted HAp nano-crystals in nanocomposites contributed to the enhanced biocompatibility. PCL-grafted HAp in nanocomposites provided more favorable environments for protein adsorption, compared with unmodified HAp. Nanocomposites containing PCL-grafted nanophase HAp showed positive effects on adhesion and proliferation of NIH3T3 fibroblasts.  相似文献   

5.
Hepatocyte cell aggregation and adhesion to HAp nanocrystals covered with SU-8 polymer micropatterns by nano/microfabrication techniques is demonstrated. The surface roughness and wettability of the HAp nanocrystals are significantly different from those of the SU-8 polymer. QCM-D and microscopic observation clearly reveal that the cells realize the surface properties to form aggregation and preferentially adhere to the HAp nanocrystals at 2 h after seeding, indicating the importance of the microstructures as well as the interfacial phenomena at a nanometer scale.  相似文献   

6.
Aqueous microgels for the growth of hydroxyapatite nanocrystals   总被引:1,自引:0,他引:1  
In present article, we demonstrate that aqueous microgels can be used as containers for the in-situ synthesis of hydroxyapatite. The hydroxyapatite nanocrystals (HAp NCs) become integrated into microgels forming hybrid colloids. The HAp NCs loaded in the microgel can be varied over a broad range. The HAp NCs are localized within the microgel corona. The deposition of the inorganic nanocrystals decreases the colloidal stability of the microgels and leads to particle aggregation at high HAp NCs loading. Because of the strong interactions between HAp NCs and polymer chains, the swelling degree of microgels decreases, and temperature-sensitive properties disappear at high loading of the inorganic component. We demonstrate that hybrid colloids can be used as building blocks for the preparation of nanostructured films on solid substrates.  相似文献   

7.
We here report the development of new thermotropic colloidal liquid-crystalline (LC) organic/inorganic hybrids consisting of a hydroxyapatite (HAp)/poly(acrylic acid) (PAA) nanorod and a dendritic forklike mesogen. Complexation of the HAp/PAA nanorod covered with negatively charged PAA and a cationic forklike mesogen through electrostatic interactions and cation metathesis results in the surface modification of the HAp/PAA nanorod with the forklike mesogen. While the HAp/PAA nanorod forms a lyotropic colloidal LC phase in the aqueous dispersion, the HAp/PAA nanorod modified with the forklike mesogen exhibits thermotropic colloidal LC phases in the solvent-free states. The biomineral-based organic/inorganic colloidal liquid crystals exhibiting thermotropic LC properties have potential for the development of new stimuli-responsive sustainable materials.  相似文献   

8.
Tanaka H  Nuno Y  Irie S  Shimomura S 《Talanta》1992,39(8):893-898
Adsorbed amounts of poly-l-lysine (pLys) and bromide ion on hydroxyapatite (HAp) from aqueous solutions of poly-l-lysine hydrobromide, and amounts of calcium and phosphate ions liberated concurrently from HAp during the adsorption of pLys were determined at 25 degrees . The pLys was adsorbed on HAp by the mechanism of ion-exchange between its amino groups and calcium ions of HAp. The released amount of calcium ion increased, therefore, with the adsorbed amount of pLys. On the other hand, the released amount of phosphate ion first decreased and then increased after attaining a minimum with the equilibrium concentration of pLys. The analysis using an equilibrium dialysis method revealed that the released phosphate ions were mainly in the bound state to the amino groups of pLys remaining in the solution, and that the concentrations of calcium and phosphate ions free from both HAp and pLys were restricted by each other under the law of the solubility product of HAp. The first decrease in the released amount of phosphate ion was concluded to be attributed primarily to the increase in the released amount of calcium ion because pLys remaining in the solution was little in this region. When sodium hydroxide was added to the solution, the adsorbed amount of pLys increased and then slightly decreased with the equilibrium pH of the solution due to the increase or decrease of the electrostatic attractive force between the adsorbate and the adsorbent. However, conformational change in pLys around pH 10 seemed to have little effect on the adsorption.  相似文献   

9.
A variety of fluoroalkyl end-capped oligomers were applied to the preparation of fluorinated oligomer/hydroxyapatite (HAp) composites (particle size: 38-356 nm), which exhibit a good dispersibility in water and traditional organic solvents. These fluoroalkyl end-capped oligomer/HAp composites were easily prepared by the reactions of disodium hydrogen phosphate and calcium chloride in the presence of self-assembled molecular aggregates formed by fluoroalkyl end-capped oligomers in aqueous solutions. In these fluorinated HAp composites thus obtained, fluoroalkyl end-capped acrylic acid oligomers and 2-methacryloyloxyethanesulfonic acid oligomer/HAp nanocomposites afforded transparent colorless solutions toward water; however, fluoroalkyl end-capped N,N-dimethylacrylamide oligomer and acryloylmorpholine oligomer were found to afford transparent colorless solutions with trace amounts of white-colored HAp precipitants under similar conditions. HAp could be encapsulated more effectively into fluorinated 2-methacryloyloxyethanesulfonic acid oligomeric aggregate cores to afford colloidal stable fluorinated oligomer/HAp composites, compared to that of fluorinated acrylic acid oligomers. These fluorinated oligomer/HAp composites were applied to the surface modification of glass and PVA to exhibit a good oleophobicity imparted by fluorine. HAp formation was newly observed on the modified polyethylene terephthalate film surface treated with fluorinated 2-methacryloyloxyethanesulfonic acid oligomers and acrylic acid oligomer/HAp composites by soaking these films into the simulated body fluid.  相似文献   

10.
Mixed-matrix membranes containing synthesised nano-sized zeolite 4A and PVAc were fabricated to investigate the effect of zeolite loading on membrane morphology, polymer-filler interaction, thermal stability and gas separation properties. SEM studies revealed that, although the membranes with 40 wt % nano-sized zeolite particles were distributed uniformly through the polymer matrix without voids, the membranes with 15 wt % zeolite loading showed agglomeration. With increasing zeolite content, the thermal stability improved, the permeability decreased and the selectivity increased. The effect of silanation on dispersion of 15 wt % zeolite 4A nanoparticles through PVAc was investigated by post-synthesis modification of the zeolite with 3-Aminopropyl(diethoxy)methylsilane. Modification of the nanoparticles improved their dispersion in PVAc, resulting in higher thermal stability than the corresponding unmodified zeolite membrane. Modification also decreased the rigidity of the membrane. Partial pore blockage of the modified zeolite nanoparticles after silanation caused a further decrease in permeability, compared to the 15 wt % unmodified zeolite membrane.  相似文献   

11.
稀土对SAPO-11分子筛结构与性能的影响   总被引:3,自引:0,他引:3  
分别采用浸渍法及离子交换法将稀土元素镧、铈引入SAPO-11分子筛, 通过XRD、BET、孔分布、in-situ FTIR及NH3-TPD等表征手段考察了稀土对SAPO-11分子筛结构及表面性能的影响. 结果表明, SAPO-11分子筛经稀土元素La、Ce改性后, 分子筛摩尔组成改变、结晶度下降, 其中La3+离子交换改性带来的变化最为明显. 在分子筛表面聚集的稀土元素可作为Lewis酸中心, 造成分子筛L酸含量增多, B/L比值下降;同时, 由于三价稀土离子吸引电子的能力弱于Al3+, 改性后催化剂的桥连羟基强度下降. 经稀土改性后, 催化剂总酸量下降.  相似文献   

12.
Nanocrystalline hydroxyapatite (HAp) prepared by a precipitation route was investigated. The X-ray diffraction (XRD) powder patterns of the elongated nanocrystals with a typical diameter of about 10 nm and length of 30-50 nm (by transmission electron microscopy (TEM)) revealed the presence of HAp with significantly broadened XRD reflections. However, Ca deficiency was found, as the Ca/P ratio was 1.5 only (so-called calcium-deficient hydroxyapatite (CDHA)), and not 1.67. This Ca deficiency of nanocrystalline HAp is explained using NMR. It is shown unambiguously that (i) the nanocrystals consist of a crystalline core and a (disordered) surface region with a relative phosphate content of about 1:1, (ii) the crystalline core is HAp, and (iii) the surface region is dominated by hydrogen phosphate anions (with no hydroxyapatite-like structural motif) and structural water (hydrate). From the relative phosphate content and taking into account the crystal shape, the thickness of the surface layer along the main crystal axis could be estimated to be about 1 nm, and the average chemical composition of the surface layer has been determined. Finally, a Ca/P ratio of 1.52 was estimated from the NMR data that compares well with the value of 1.51 from chemical analysis. The important consequences are that the surface of nanocrystalline HAp has nothing in common with the bulk composition and that the chemistry of such materials (e.g. the binding of protein molecules to phosphate surfaces) must be reconsidered.  相似文献   

13.
Synthetic colloidal calcium hydroxyapatite (Ca(10)(PO(4))(6)(OH)(2): CaHap) was treated with pyrophosphoric acid (H(4)P(2)O(7): PP) in acetone and the materials were characterized by XRD, TEM, FTIR, and N(2) and H(2)O adsorption measurements. XRD patterns and morphology of CaHap particles were essentially not changed by the modification. The additional amount of PO(4) of CaHap was increased with an increase of PP concentration and the Ca/P molar ratio of the particles decreased from 1.62 to 0.81. IR results indicated that the isolated surface POH band developed with increasing the PP concentration up to 6.0 mmol dm(-3) by the reaction of isolated surface POH groups of CaHap and pyrophosphoric acids. Above 10.2 mmol dm(-3), a hydrogen-bonding surface POH band appeared at 2913 cm(-1) and enlarged with increasing the PP concentration, while the isolated surface POH band was weakened. The results of N(2) and H(2)O adsorption measurements revealed that the modified particles aggregated compared to the unmodified ones, which would be due to the formation of hydrogen-bonding surface POH groups among the particles.  相似文献   

14.
A uniform-sized molecularly imprinted polymer (MIP) for (S)-naproxen selectively modified with hydrophilic external layer has been prepared. First, the molecularly imprinted polymer for (S)-naproxen was prepared using 4-vinylpyridine and ethylene glycol dimethacrylate (EDMA) as a functional monomer and cross-linker, respectively, by a multi-step swelling and thermal polymerization method. Next, a 1:1 mixture of glycerol monomethacrylate (GMMA) and glycerol dimethacrylate (GDMA) was used for hydrophilic surface modification, and it was added directly to the molecularly imprinted polymer for (S)-naproxen 4 h after the start of molecular imprinting. The retention factors of all solutes tested were decreased with the surface modified molecularly imprinted polymer, compared with the unmodified molecularly imprinted polymer. However, chiral recognition of racemic naproxen was attained with the surface modified molecularly imprinted polymer as well as the unmodified molecularly imprinted polymer. Further, bovine serum albumin was completely recovered from the surface modified molecularly imprinted polymer. These results revealed that the chiral recognition sites of (S)-naproxen remained unchanged with hydrophilic surface modification, and that the molecularly imprinted polymer for (S)-naproxen was selectively modified with hydrophilic external layer. Preliminary results reveal that the surface modified molecularly imprinted polymer could be applicable to direct serum injection assays of (S)-naproxen.  相似文献   

15.
Silicoaluminophosphate (SAPO)-11 molecular sieve was modified by rare earth La and Ce using impregnating and ion-exchanging methods. The RE-modified SAPO-11 samples were characterized by X-ray diffraction (XRD), Brunauer-Emmett- Teller (BET), pore-size distribution (PSD), in-situ Fourier transform infrared spectroscopy (FTIR), and temperature-programmed desorption of ammonia (NH3-TPD), and compared with the unmodified SAPO-11 sample. The XRD patterns indicated that after RE modification, especially for the La-exchanged sample, the composition of molecular sieve was changed and the crystallinity decreased. The normalized surface area (NSA) of ion-exchanged samples proved that the unsubstituted metal oxides accumulated inside the SAPO-11 pores. Because of the RE cations that were loaded onto the surface of molecular sieve, which could be regarded as the Lewis acid sites, there was an increase in the amount of Lewis acid sites and a decrease in the Brønsted acid/Lewis acid (B/L) ratio. The ability of RE cations to acquire electrons was weaker than that of Al3+; therefore, the bond strength of bridged hydroxyl decreased after modification. The total acidity of SAPO-11 decreased after RE modification.  相似文献   

16.
Novel fluoroalkyl end‐capped vinyltrimethoxysilane oligomer/hydroxyapatite (HAp) nanocomposites were prepared by the reaction of calcium nitrate tetrahydrate and phosphoric acid in the presence of the corresponding oligomer. These fluorinated oligomer/HAp composites thus obtained are nanometer size‐controlled fine particles (83–173 nm), and were found to exhibit good dispersibility in methanol, ethanol, and isopropyl alcohol. These fluorinated HAp nanocomposites were applied to the surface modification of glass and poly(methyl methacrylate) (PMMA) to exhibit good hydro‐ and oleophobic characteristics imparted by fluorine on their surface. In addition, the surface structural changes of the modified polyethylene terephtalate and PMMA films treated with these fluorinated nanocomposites before and after soaking in a simulated body fluid (SBF) were analyzed by using SEM, XRD, and EDX to observe the formation of spherical HAp deposits on the surface. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

17.
The fouling tendency, due to adsorption on the pore walls, of two pairs of modified and unmodified ultrafiltration membranes, with similar observed retentions determined by dextran and gel permeation chromatography, was studied. The membranes investigated were made of modified and unmodified polyaramide (PA) and modified and unmodified polyvinylidene fluoride (PVDF). The PVDF membrane was surface-modified and the PA membrane was made from a modified polymer solution. Membrane modification was used to reduce fouling by adsorption. Octanoic acid was used as the fouling substance, representing a large number of small, hydrophobic compounds. It is demonstrated in this investigation that membrane modification is not always successful. It was determined that at lower concentrations of octanoic acid, the modified PA membrane exhibits a smaller fouling tendency than the unmodified PA membrane, while the result is reversed for concentrations above 60% of the saturation concentration. The fouling tendency of the unmodified PVDF membrane is much lower than that of the modified PVDF membrane at all concentrations. The cross-sections of the membranes were visually examined with scanning electron microscopy, but no difference could be observed between the modified and unmodified membranes. The membranes were also examined with Fourier transform infrared spectroscopy. The spectra of the two PA membranes were different, while no difference was observed for the unmodified and surface-modified PVDF membranes. Remains of octanoic acid were found in the membranes, although they had been thoroughly rinsed with deionized water and the initial pure water flux was recovered.  相似文献   

18.
Diglycidyl ether of bisphenol A (DGEBA)‐bridged polyorganosiloxane precursors have been prepared successfully by reacting diglycidyl ether of bisphenol A epoxy resin with 3‐aminopropyltriethoxysilane. Acid‐modified and unmodified multiwalled carbon nanotube (MWCNT) were dispersed in the diglycidyl ether of bisphenol A‐bridged polyorganosiloxane precursors and cured to prepare the carbon nanotube/diglycidyl ether of bisphenol A‐bridged polysilsesquioxane (MWCNT/DGEBA‐PSSQ) composites. The molecular motion of MWCNT/DGEBA‐PSSQ nanocomposites was studied by high‐resolution solid‐state 13C NMR. Acid‐modification can improve the affinity between MWCNT and the polymer matrix. The molecular motion of the DGEBA‐PSSQ decreased with acid‐modified MWCNT content. However, when unmodified MWCNT was used, the molecular motion of the DGEBA‐PSSQ was increased. SEM and TEM microphotographs confirm that acid‐modified MWCNT exhibits better dispersion than unmodified MWCNT in DGBEA‐PSSQ. The dynamic mechanical properties of acid‐modified MWCNT/DGBEA‐PSSQ composites are more favorable than those of unmodified MWCNT. Tg of the DGEBA‐PSSQ decreased from 174.0 °C (neat DGEBA‐PSSQ) to 159.0 °C (1 wt % unmodified MWCNT) and 156.0 °C (1 wt % acid‐modified MWCNT). The storage modulus (at 30 °C) of the DGEBA‐PSSQ increased from 1.23 × 109 Pa (neat DGEBA‐PSSQ) to 1.65 × 109 Pa (1 wt % acid‐modified MWCNT). However, when unmodified MWCNT was used, the storage modulus of the DGEBA‐PSSQ decreased to 6.88 × 108 Pa (1 wt % unmodified MWCNT). At high temperature, above 150 °C, storage modulus of nanocomposites was higher than that of neat polymer system. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 472–482, 2008  相似文献   

19.
Both the Babcock (AOAC Method 989.04, revised Final Action 2000) and modified Mojonnier ether extraction (AOAC Method 989.05) methods are used in the dairy industry to determine the fat content of milk. Prior to revision in 1997, the Babcock method gave consistently higher fat test results than did the ether extraction. In 1997, a modification of the Babcock method was introduced to bring the results of the Babcock test into closer agreement with the ether extraction. The Babcock method was modified by lowering the temperatures used at various points in the method from about 57.5 to 48 degrees C to increase the density of the material in the Babcock column. A collaborative study of the modification indicated it was successful in bringing the Babcock and ether extraction results into agreement but suggested that performance of the modified method was not as good as that of the unmodified method. In the present study, substantial evidence is presented to validate the success of the Babcock modification in bringing test results into agreement with ether extraction, and to document that temperature modification does not adversely affect method performance. Data were evaluated from an on-going proficiency testing program where 8-15 laboratories tested 7 milk samples in blind duplicate once every 2 months. Laboratories used the unmodified method from 1995 through 1996 and the modified method from 1998 through 1999. Compared with ether extraction, test results from the unmodified Babcock test were consistently higher by an average of 0.022% fat. For the modified Babcock test, average test results were -0.003% fat lower than with ether extraction and not significantly different from zero. AOAC method performance statistics (within- and between-laboratory precision) were equivalent for both the unmodified (Sr = 0.027, SR = 0.041, RSDr = 0.73%, RSDR= 1.08%) and modified (Sr = 0.023, SR = 0.038, RSDr = 0.60%, RSDR = 1.02%) Babcock methods. Modification of the Babcock method was successful in bringing test results into agreement with those of ether extraction.  相似文献   

20.
采用层层自组装技术与光化学修饰方法相结合在聚氨酯材料表面固定生物多糖衍生物,首先合成具有光反应活性的叠氮壳聚糖,再在聚氨酯基材表面进行叠氮壳聚糖与香菇多糖硫酸酯的层层自组装,然后通过光化学反应对自组装多层膜修饰层进行交联,制备得到生物多糖衍生物层层自组装与光化学表面修饰的聚氨酯材料.通过红外光谱、X射线光电子能谱、水接触角测量仪、抗菌活性测试、溶血试验和血小板黏附测试等方法对被修饰聚氨酯材料的表面性能和生物性能进行了分析,测试结果表明修饰后的聚氨酯材料表面的亲水性和血液相容性得到改善,并且被修饰材料对大肠杆菌具有良好的抑制效果.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号