首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
This paper examines the potentiality of in-capillary derivatization for improving the sensitivity of the spectrophotometric detection of amino acids in capillary zone electrophoresis. 1,2-Naphthoquinone-4-sulfonate was selected as the labeling agent of amino acids. The underivatized sample and the reagent solution segments are injected by pressure into the capillary prior to applying the running voltage. The corresponding derivatization reaction occurs inside the capillary once the potential is applied, as it induces mixing of the sample with the reagent. Several introduction modes consisting of tandem or sandwich configuration have been evaluated. These techniques result in a straightforward and automated way of carrying out a derivatization. Furthermore, in-capillary procedures may become much more attractive than conventional pre-capillary derivatization in terms of sensitivity and reproducibility. The optimum operation mode found consists of a sandwich system where the sample is injected in between two reagent segments. The method was applied to the determination of amino acids in feed samples. Results show a good concordance with those given by a standard amino acid analyzer.  相似文献   

2.
A rapid and sensitive electrophoretically mediated microanalysis method with field-enhanced sample injection (FESI) for in-capillary derivatization was developed to determine selenomethionine (SeMet) and selenomethionine selenoxide (SeOMet). Phthalic anhydride (PA) was selected as the derivatization reagent due to the fast reaction at room temperature and the stability of derivatives. The in-capillary derivatization was accomplished by electrophoretically mixing PA and sample plugs. PA reagent was introduced hydrodynamically into the capillary, whereas the sample solution was injected electrokinetically, thus allowing a selective preconcentration of the analytes by FESI. For FESI, the optimum sample solvent was 2 mM borate solution. The borate buffer was suitable for both in-capillary derivatization and separation of the derivatives. The combination of electrophoretically mediated microanalysis with FESI for in-capillary derivatization was successfully achieved with about 800-fold concentration sensitivity enhancement compared to direct CE-UV detection in the same setup. The present method is miniaturized and fully automated, which ensures the on-line derivatization, stacking, separation and detection in 10 min. Finally, the developed method was successfully applied to measure enzyme activities by analyzing the reaction mixtures of SeMet with human flavin-containing monooxygenases (FMO). The results showed that both FMO1 and FMO3, but not FMO5 could catalyze the Se-oxygenation of SeMet.  相似文献   

3.
A new in-capillary derivatization method with naphtalene-2,3-dicarboxyaldehyde (NDA)/CN(-) has been developed for capillary electrophoresis with laser-induced fluorescence detection of brain microdialysate amino acids. Samples are sandwiched between two plugs of reagent mixture at the capillary inlet and subsequently separated. Highest derivatization yields are obtained by using a reagent to sample plug length ratio equal to 4, performing a first electrophoretic mixing followed by a zero potential amplification step before applying the separation voltage and using a NaCN to NDA concentration ratio equal to 1. This new single-step methodology allows the analysis of amino acid neurotransmitters in rat brain microdialysis samples.  相似文献   

4.
The feasibility of the combination of field-amplified sample injection (FASI) and in-capillary derivatization was explored for improving sensitivity of histamine in capillary electrophoresis (CE). Naphthalene-2,3-dicarboxaldehyde (NDA) was used as derivatization reagent. The reagent and sample was introduced by tandem mode. The derivatization was accomplished by at-inlet mode with standing time of 1.5 min. The combination of FASI and in-capillary derivatization was successfully achieved with about 400-fold concentration sensitivity enhancement compared to pre-capillary derivatization at the same set-up. The detection limit of concentration for histamine reached 1.25 x 10(-11) M by CE and fluorescence detection with S/N = 3. Parameters affecting FASI and in-capillary derivatization process including sample matrix, buffer concentration and reagent injection amount, were investigated.  相似文献   

5.
A capillary electrophoresis method with UV-absorbance detection was studied and optimized for the determination of underivatized amino acids in urine. To improve concentration sensitivity the utility of in-capillary analyte stacking via dynamic pH junction was investigated with phenylalanine (Phe) and tyrosine (Tyr) as model amino acids. Before sample injection, a plug of ammonium hydroxide solution was injected to enable analyte concentration. Samples were 1:1 (v/v) mixed with background electrolyte (1 M formic acid) prior to injection. The effect of the injected sample volume, and the injected ammonium hydroxide volume and concentration on analyte stacking and separation performance was investigated. The optimal volume of ammonium hydroxide depended on the injected sample volume. Using a dynamic pH junction good resolution (1.4) was obtained for a sample injection volume of 10% of the capillary (196 nl) with Phe and Tyr dissolved in water. Limits of detection (LODs) were 0.036 and 0.049 μM for Phe and Tyr, respectively. For urine samples, the optimized procedure comprised a 1.7-nl injection of 12.5% ammonium hydroxide, followed by a 196-nl injection of urine spiked with Phe and Tyr. Satisfactory resolution was obtained and amino acid peak widths at half height were only 1.6 s indicating efficient stacking. Calibration plots for Phe and Tyr in urine showed good linearity (R(2) > 0.96) in the concentration range 10-175 μM, and LODs for Phe and Tyr were 0.054 and 0.019 μM, respectively. RSDs for peak area and migration time for Phe and Tyr were below 7.5% and 0.75%, respectively.  相似文献   

6.
Lee JH  Choi OK  Jung HS  Kim KR  Chung DS 《Electrophoresis》2000,21(5):930-934
An efficient separation of eleven nonprotein amino acids (NPAAs) and three protein amino acids containing aromatic moieties was achieved by capillary electrophoresis without derivatization. The fourteen amino acids were well separated with a 100 mM sodium phosphate run buffer (pH 2.0) using a 57 cm fused-silica capillary (50 microm ID, 50 cm effective length) at 20 degrees C. With an electric field of 351 V/cm, the time needed for the separation was less than 20 min. Under optimum conditions, excellent linear responses were obtained in the concentration range of 5-100 microM, with the linear correlation coefficient ranging from 0.9785 or greater. The relative standard deviations of the migration times and the corrected peak areas were found to be 1.5-3.9% and 8.0-11.5%, respectively. In order to improve the limit of detection (LOD), simple stacking and large volume stacking using an EOF pump (LVSEP) methods were used. Improved LODs were about 300 nM in stacking and below 15 nM for five small NPAAs in LVSEP.  相似文献   

7.
Zhang Y  Gomez FA 《Electrophoresis》2000,21(15):3305-3310
This work demonstrates the use of an in-capillary procedure for derivatization of amino acids, peptides, and alkylamines by anhydrides using capillary electrophoresis (CE). Migrating in an uncoated fused-silica capillary, plugs of substrate and anhydride are injected separately and electrophoresed. Differential transport velocities permit the separate zones to penetrate each other under an applied field, thereby facilitating reaction. In initial experiments the extent of reaction between tryptophan and acetic anhydride was examined and product amounts quantitated by CE. In separate experiments a series of amino acids and peptides were injected into the capillary and reacted with phthalic anhydride on-column to yield the phthalic derivatized species. Finally, on-column derivatization of alkylamines with phthalic anhydride was investigated and electrophoretic mobility related to molecular weight of the derivatized amines. These procedures illustrate the use of the capillary as a microreactor in the facile synthesis of derivatized molecules and ease of quantitation of reaction products under conditions of electrophoresis.  相似文献   

8.
We developed a rapid and sensitive method using in-capillary derivatization and laser-induced fluorescence (LIF) detection for the fully automated analysis of organophosphorus pesticides (OPPs), including glufosinate, aminomethylphosphonic acid (AMPA) and glyphosate by micellar electrokinetic chromatography (MEKC). The potential of 4-fluoro-7-nitro-2,1,3-benzoxadiazole (NBD-F) as in-capillary derivatization reagent is described for the first time. The unique feature of this MEKC method is the capillary being used as a small reaction chamber. In in-capillary derivatization, the sample and reagent solutions were injected directly into the capillary by tandem mode, followed by an electrokinetic step to enhance the mixing efficiency of analytes and reagent plugs in accordance with their different electrophoretic mobilities. Standing a specified time for reaction, the derivatives were then immediately separated and determined. Careful optimization of the derivatization and separation conditions allowed the determination of glufosinate, AMPA and glyphosate with detection limits of 2.8, 3.6 and 32.2 ng/mL, respectively. These detection limits were comparable to those of 1.4, 1.9 and 23.8 ng/mL obtained from conventional pre-capillary derivatization. Furthermore, repeatability better than 0.40% for migration time and 3.4% for peak area, as well as shorter migration time, was obtained. The method was successfully applied to the analysis of spiked river water sample with satisfactory results.  相似文献   

9.
An in-capillary derivatization of amino acids and peptides with 4-fluoro-7-nitro-2,1,3-benzoxadiazole (NBD-F) was developed for their subsequent capillary electrophoretic analysis with laser-induced fluorescence detection (λ ex=488 nm). The in-capillary derivatization was achieved in zone-passing mode by introducing successive plugs of sample and NBD-F into a fused silica capillary previously equilibrated with an alkaline borate buffer. To prevent NBD-F hydrolysis and to achieve a reliable derivatization, NBD-F was prepared daily in absolute ethanol and a plug of absolute ethanol was introduced between the sample and NBD-F reagent plugs. Various parameters influencing the derivatization efficiency were investigated and the optimum conditions were as follows: background electrolyte (BGE), 20 mM borate buffer (pH 8.8); introduction time, 4 s for sample and 2 s for NBD-F; molar ratio of NBD-F/sample, above 215; temperature, 45 °C for amino acids and 35 °C for peptides; applied voltage, +15 kV. The validation of the in-capillary derivatization method under optimal conditions showed a good linearity between the heights of the derivative peaks and the concentrations of the amino acids. The intra-day relative standard deviations of the migration times and the peak heights were less than 1.3% and 4.6%, respectively. The efficient derivatization and separation of a mixture of valine, alanine, glutamic acid and aspartic acid were achieved using this technique. Peptides such as buccaline and β-protein fragment 1–42 could also be derivatized using the developed in-capillary derivatization procedure. In‑capillary derivatization and separation of amino acids with different concentrations. From the top to bottom the concentrations are 1.11×10−5 M, 5.55×10−6 M, 2.78×10−6 M, 6.95×10−7 M. for valine; 1.26×10−5 M, 6.30×10−6 M, 3.15×10−6 M, 7.88×10−7 M for alanine; 3.78×10−5 M, 1.89×10−5 M, 9.45×10−6 M, 2.36×10−6 M for glutamic acid;, 4.27×10−5 M, 2.14×10−5 M, 1.07×10−5 M, 2.68×10−6 M for aspartic acid. Experiment conditions: injection order: 4s for sample, 1s for absolute ethanol, and then 2s for 5.24×10−2 M NBD‑F; BGE: 20 mM borate pH 8.77; Applied voltage: 15 kV.  相似文献   

10.
Molina M  Silva M 《Electrophoresis》2002,23(14):2333-2340
This paper describes a general approach for the in-capillary derivatization of amino compounds and the subsequent sensitive determination of the derivatives by micellar electrokinetic chromatography (MEKC) or capillary zone electrophoresis (CZE) with laser-induced fluorescence (LIF) detection. Amino acids, biogenic amines and amino phosphonic acid-herbicides were chosen as model analytes to evaluate the analytical potential of this approach. Fulfilment of the in-capillary reaction of the analytes using LIF detection hinged on the excellent labeling chemistry of 5-(4,6-dichloro-s-triazin-2-ylamino)fluorescein (DTAF) and the good resolution achieved in the separation of derivatized analytes. Careful optimization of the electrophoretic conditions in the mixing step of this protocol allowed the determination of amino acids, biogenic amines and phosphorus-containing amino acid-herbicides with concentration limits of detection at the nug/L level and relative standard deviations from 3.5 to 5.8%. The whole analysis is carried out within 20 min, resulting in a very simple, fast and practical approach for the fully automated analysis of amino acids and related compounds in low-volume and low-concentration samples.  相似文献   

11.
A rapid capillary electrophoresis method for routine determination of two amino acids, L-ornithine and L-aspartic acid, in human plasma is reported. The method runs automatically, requires a minimum of sample preparation and moreover includes no extensive extraction and no gradient or derivatization procedure. Analyses were performed on an uncoated silica capillary using buffer solution composed with 10 mM sodium tetraborate and 1 M sodium hydroxide (pH=10.0). A capillary electrophoresis P/ACE system equipped with UV detection (200 nm), an automatic injector, a fluid cooled cartridge and System Gold data station was used in this study. The total analysis time under these conditions was 8.0 min. The calibration curve was linear in the range 10-280 microg mL-1 for L-aspartic acid and 20-280 microg mL-1 for L-ornithine (for both amino acids, r=0.999). The method was validated by inaccuracy (bias) and precision (RSD) studies by analysing samples. The method was successfully applied to the quantitative determination of L-ornithine-L-aspartate in human plasma and could be useful for clinical and bioavailability investigations.  相似文献   

12.
Tábi T  Magyar K  Szöko E 《Electrophoresis》2005,26(10):1940-1947
A capillary electrophoresis method has been developed for the simultaneous analysis of the oxidized, nitrated, and chlorinated aromatic amino acids, as well as their parent compounds. These modifications of the aromatic amino acids in proteins or free form are induced by the attack of reactive, mainly free radical species generated during cell stress, and these stable products may serve as biomarkers of cell damage. The analytes tyrosine, phenylalanine, dihydroxyphenylalanine, tryptophan, 3-nitrotyrosine, 3-chlorotyrosine, ortho-tyrosine, meta-tyrosine, 3-hydroxyphenylacetic acid (internal standard 1), and alpha-methyltyrosine (internal standard 2) were separated in their anionic forms in alkaline borate buffer. The polyamine spermine was used as electroosmotic flow (EOF) modifier. Adsorbing to the capillary wall, spermine can either suppress or even reverse the EOF depending on its concentration and the pH. The effects of the pH of the separation buffer, the spermine concentration, the temperature, and the applied field strength on the separation were examined. The modified aromatic amino acids are present in biological fluids in a much lower concentration than their parent compounds, thus high detection sensitivity of the analytical method is required. To achieve good detection sensitivity, field-amplified sample stacking of large injection volumes was applied. Omitting polyamine from the sample buffer allowed local reversal of the EOF, thus removal of the low conductivity sample buffer at the capillary inlet. In this way, 100% of the capillary to the detection window could be filled with the sample, and the detection limits achieved for the modified aromatic amino acids were in the range of 2.5-10 nM.  相似文献   

13.
Zhou L  Zhou X  Luo Z  Wang W  Yan N  Hu Z 《Journal of chromatography. A》2008,1190(1-2):383-389
This paper describes an automatic rapid approach for in-capillary derivatization of ephedrine (E) and pseudoephedrine (PE) and subsequent sensitive determination of the derivatives by micellar electrokinetic chromatography (MEKC) with laser-induced fluorescence (LIF) detection using 4-fluoro-7-nitro-2,1,3-benzoxadiazole (NBD-F) as fluorescent reagent. The unique feature of this method is the capillary being used as a small reaction chamber, in which the sample, derivatization buffer and reagent solutions were injected directly into the capillary by tandem mode, followed by an electrokinetic step (5 kV, 15s) to enhance the mixing efficiency of analytes and reagent plugs. Standing a specified time of 1 min for reaction, the derivatives were then immediately separated and determined. Several parameters for in-capillary derivatization and subsequent MEKC separation were systematically investigated. Under these optimized conditions, a baseline separation of the two analytes was achieved within 10 min and the derivatization concentration limits of detection were found to be 4.8 ng mL(-1) for E and 1.6 ng mL(-1) for PE, respectively. The method was validated in terms of precision, linearity, accuracy and successfully applied for the determination of the two alkaloids in ephedra herb and its preparations.  相似文献   

14.
In this paper, a fluorescein isothiocyanate (FITC) precolumn derivatization technique in conjunction with an HPLC-in-capillary optical fiber laser-induced fluorescence (HPLC-ICOF-LIF) detection method has been developed for determination of amino acids. The HPLC separation of FITC-labeled amino acids and the ICOF-LIF detection system are studied and optimized. Optimum separation conditions were obtained with a gradient elution program of acetonitrile and phosphate buffer (10 mM, pH 6.8). The ICOF-LIF detection system comprises a 530-??m capillary and a 380-??m optical fiber. The analyses of amino acids display excellent linear relationship between peak area and concentration with correlation coefficients greater than 0.999 and the method also provides good repeatability with RSD < 3%. The detection limits for FITC-tagged amino acids are very low and the lowest LOD for tyrosine is 51 pM. The proposed method has been successfully applied to determination of amino acids in human serum. Our developed HPLC-ICOF-LIF system is cheap, simple, stable, and sensitive which is potentially useful for the formulation analysis and bioanalysis.  相似文献   

15.
In this study 21 amino acid standards, samples of pure phloem sap and samples of pooled mesophyll cells were derivatized with fluorescein isothiocyanate, separated by capillary electrophoresis and detected with laser-induced fluorescence at 488 nm. Two different background electrolytes, a sodium borate buffer containing sodium dodecyl sulfate and a sodium borate buffer containing alpha-cyclodextrin, were used for the separation. Using the sodium dodecyl sulfate buffer, 14 amino acid standards could be separated, spiking identified 12 amino acids in pure phloem sap and 13 amino acids in pooled mesophyll cells. With the alpha-cyclodextrin containing background electrolyte, a resolution of 20 amino acid standards could be attained, 17 amino acids in pure phloem sap and 10 amino acids in mesophyll cells could be assigned. Leucine and isoleucine comigrated in both buffer systems. All separations were performed with a voltage of +20 kV and completed within 30 min. The detection limits obtained were in the fmol range for the sodium dodecyl sulfate and in the pmol range for the alpha-cyclodextrin background electrolyte. Compared to the one published capillary electrophoresis-based method for the determination of amino acids from few plant cells, the procedure described here allows very high sensitivity due to the use of laser-induced fluorescence detection and opens the possibility to dilute and measure pl samples with an fully automated, commercially available CE system.  相似文献   

16.
A sensitive CE method for determining biogenic amines in wines based on in-capillary derivatization with 1,2-naphthoquinone-4-sulfonate is presented. In this method, reagent and buffer solutions are introduced hydrodynamically into the capillary whereas the sample is injected electrokinetically, thus, allowing a selective preconcentration of the analytes by field-amplified sample stacking. Amines are labeled inside the capillary using a zone-passing derivatization approach in mixed tandem mode. The most relevant variables influencing on the derivatization and separation as well as significant interactions have been evaluated using experimental design. Multi-criteria decision making is utilized for the simultaneous optimization of interacting variables through overall desirability response surfaces. The validation of the method has proven an excellent separation performance and accuracy for the determination of biogenic amines such as histamine, tryptamine, phenylethylamine, tyramine, agmatine, ethanolamine, serotonin, cadaverine, and putrescine in red wines. Detection limits range from 0.02 mg/L for ethanolamine to 0.91 mg/L for serotonin. The RSDs for migration time and peak area are around 1.2 and 6.2%, respectively. Red wines from different Spanish regions have been analyzed using the proposed method.  相似文献   

17.
Simple, selective yet sensitive methods to quantify low-abundance bacterial biomarkers derived from complex samples are required in clinical, biological, and environmental applications. In this report, a new strategy to integrate sample pretreatment with chemical analysis is investigated using on-line preconcentration with chemical derivatization by CE and UV detection. Single-step enantioselective analysis of muramic acid (MA) and diaminopimelic acid (DAP) was achieved by CE via sample enrichment by dynamic pH junction with ortho-phthalaldehyde/N-acetyl-L-cysteine labeling directly in-capillary. The optimized method resulted in up to a 100-fold enhancement in concentration sensitivity compared to conventional off-line derivatization procedures. The method was also applied toward the detection of micromolar levels of MA and DAP excreted in the extracellular medium of Escherichia coli bacterial cell cultures. On-line preconcentration with chemical derivatization by CE represents a unique approach for conducting rapid, sensitive, and high-throughput analyses of other classes of amino acid and amino sugar metabolites with reduced sample handling, where the capillary functions simultaneously as a concentrator, microreactor, and chiral selector.  相似文献   

18.
Q Weng  W Jin 《Electrophoresis》2001,22(13):2797-2803
A method is described for the direct identification and quantification of amino acids in individual mouse peritoneal macrophages by capillary zone electrophoresis with electrochemical detection after on-column derivatization with naphthalene-2,3-dicarboxaldehyde (NDA) and CN-. In this method, individual macrophages and then the lysing/ derivatizing buffer are injected into the front end of the separation capillary by electromigration with the aid of an inverted microscope. The front end of the separation capillary is used as a chamber to lyse the macrophage and derivatize its contents, which minimizes dilution of amino acids of a single macrophage during derivatization. Six amino acids (serine, alanine, taurine, glycine, glutamic acid, and aspartic acid) in single mouse peritoneal macrophages have been identified. Quantitation has been accomplished through the use of calibration curves, where the concentration ratios of these standard amino acids are similar to the concentration ratios of amino acids in macrophages. Cellular levels of the amino acids in these cells range from 0.27 +/- 0.20 fmol/ cell for alanine to 6.4 +/- 4.6 fmol/cell for taurine.  相似文献   

19.
A rapid and sensitive method for the determination of 1-aminocyclopropane-1-carboxylic acid (ACC) in apple tissues has been described. This method is based on the derivatization of ACC with 3-(2-furoyl)quinoline-2-carboxaldehyde (FQ), and separation and quantification of the resulting FQ-ACC derivative by capillary electrophoresis coupled to laser-induced fluorescence detection (CE-LIF). Our results indicated that ACC derivatized with FQ could be well separated from other interfering amino acids using 20 mM borate buffer (pH 9.35) containing 40 mM sodium dodecyl sulfate and 10 mM Brij 35. The linearity of ACC was determined in the range from 0.05 to 5 microM with a correlation of 0.9967. The concentration detection limit for ACC was 10 nM (signal-to-noise = 3). The sensitivity and selectivity of this described method allows the analysis of ACC in crude apple extracts without extra purification and enrichment procedure.  相似文献   

20.
It was demonstrated that a separation of 20 amino acids constituting a protein and three phosphoamino acids that mostly frequently occur in eukaryotes was achieved within 15 min by capillary electrophoresis coupled with lamp-induced fluorescence detection. Fluorescein isothiocyanate was employed as the fluorescence label to facilitate the fluorescence detection of the 23 amino acid species. The fluorescent derivatization conditions and separation parameters including concentration of electrolyte, surfactant in buffer, applied voltage and sample injection were investigated in detail and optimized. The influence of buffer additives such as methanol, acetone and polyvinylpyrrolidone on separation selectivity and sensitivity were discussed. We showed that addition of 2% polyvinylpyrrolidone into the running buffer could dramatically enhance the separation selectivity of amino acids at the expense of a decrease of sensitivity of phosphoamino acids. Under the optimized conditions, the detection limits (S/N=2) ranged from 1.90 x 10(-8) M to 5.66 x 10(-8) M with an average efficiency of 620,000/m. The method was applied to characterization of the phosphorylation of a novel protein kinase RCaMBP (calcium/calmodulin-binding protein kinase) encoded by a cDNA newly isolated and cloned from rice. We verified that RCaMBP belonged to a type of Ser/Thr kinase, providing insight into its function in signal transduction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号