首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have found twelve new FIR laser lines in12CH3OH and thirty three in13CH3OH. Both molecules were pumped by a regular cw CO2 laser. We have also assigned 2013CH3OH laser lines to specific rotational energy levels in the excited C-O stretchhindered rotation combined states  相似文献   

2.
The12CH3 18OH molecule has been investigated for new far-infrared laser lines by optically pumping it with a cw waveguide CO2 laser. The larger tunability (318 MHz) with respect to a conventional CO2 laser permits the pumping of many12CH3 18OH lines. As a consequence 100 new laser lines have been discovered, ranging from 34.6 m to 653.2 m in wavelength. The infrared spectrum of12CH3 18OH has been observed and all the fundamental vibration energies measured.  相似文献   

3.
Twenty-seven new far-infrared laser lines from the isotopomers of methanol: 12CD3OH, 12CH3OD, and 12CH2DOH, were obtained by optically-pumping the molecules with an efficient cw CO2 laser. The CO2 laser provided pumping from regular, sequence, and hot-band CO2 laser transitions. The 2-m long far-infrared cavity was a metal-dielectric waveguide closed by two, flat end mirrors. Several short-wavelength (below 100 m) lines were observed. The frequencies of 28 laser lines observed in this cavity (including new lines and already known lines) were measured with a fractional uncertainty limited by the fractional resetability of the far-infrared laser cavity, of 2 parts in 107.  相似文献   

4.
Twenty-seven new FIR, far-infrared, laser lines from the isotopomers of methanol: 12CD3OH, 12CH3OD, and 12CH2DOH, were obtained by optically pumping the molecules with an efficient cw CO2 laser. The CO2 laser provided pumping from regular, sequence, and hot-band CO2 laser transitions. The 2 m long far-infrared cavity was a metal-dielectric waveguide closed by two, flat end mirrors. Several short-wavelength (below 100 m) lines were observed. The frequencies of 28 laser lines observed in this cavity (including new lines and already known lines) were measured with a fractional uncertainty limited by the fractional resetability of the far-infrared laser cavity, of 2 parts in 107.  相似文献   

5.
We have reinvestigated 13CH3OH as a source of far-infrared (FIR) laser emission using a CO2 laser as a pumping source. Thirty new FIR laser lines in the range 36.5 μm to 202.6 μm were observed and characterized. Five of them have wavelengths between 36.5 and 75 μm and have sufficient intensity to be used in LMR spectroscopy. Using Fourier-transform spectroscopic data in the infrared (IR) and FIR regions we have determined the assignment for 10 FIR laser transitions and predict nine frequencies for laser lines which have yet to be observed. Received: 17 July 2000 / Published online: 6 December 2000  相似文献   

6.
We report 12 new THz (far-infrared) laser lines from methanol (CH3OH), ranging from 58.1 μm (5.2 THz) to 624.6 μm (0.5 THz). A 13CO2 laser of wide tunability (110 MHz) has been used for optical pumping, allowing access to previously unexplored spectral regions. Optoacoustic absorption spectra were used as a guide to search for new THz laser lines, which have been characterized in wavelength, polarization, offset, relative intensity, and optimum operation pressure. For 20 laser lines previously observed, we have measured the absorption offset with respect to the 13CO2 laser line center. PACS 33.20.Ea; 33.20.Vq; 33.80.-b  相似文献   

7.
In this paper we report on the detection of new far-infrared laser lines from CH3Cl and CH3Br optically pumped with a continuously tunable high pressure CO2 laser. We found 80 new lines for CH3Cl and 9 new lines for CH3Br in the frequency region between 16 cm–1 and 41 cm–1, all due to stimulated Raman scattering. For the Raman gain regions bandwidths up to about 700 MHz were found. We also observed high intensity short far-infrared laser pulses of durations in the nanosecond regime.Permanent address: Physics Department, State Pedagogical University, SU-119435 Moscow, USSR  相似文献   

8.
The CD3OH molecule has been investigated for new far-infrared laser lines by optically pumping with a cw waveguide CO2 laser. The increased tunability (300 MHz) with respect to a conventional CO2 laser permits to pump many new CD3OH lines. As a consequence 108 new laser lines have been discovered, ranging from 42.9 to 1155 m in wavelength. On some lines the effect of an electric Stark field has been investigated demonstrating a laser frequency tuning. The total number of known FIR laser lines from CD3OH is increased to about 340 making this molecule the most prolific together with CH3OH.  相似文献   

9.
A three-laser heterodyne system was used to measure the frequencies of twelve optically pumped laser emissions from 13CH3OH in the far-infrared (FIR) region. These emissions, ranging from 54 to 142 μm, are reported with fractional uncertainties up to ±2×10-7 along with their polarization relative to the CO2 pump. Using the 9P32 and 10R14 CO2 lines, complete spectroscopic assignments for two laser systems were confirmed. Received: 31 May 2001 / Published online: 19 September 2001  相似文献   

10.
A three-laser heterodyne system was used to measure the frequencies of twelve previously observed far-infrared laser emissions from the partially deuterated methanol isotopologues 13CD3OH and CHD2OH. Two laser emissions, a 53.773 μm line from 13CD3OH and a 74.939 μm line from CHD2OH, have also been discovered and frequency measured. The CO2 pump laser offset frequency was measured with respect to its center frequency for twenty-four FIR laser emissions from CH3OH, 13CD3OH and CHD2OH. PACS 07.57.Hm; 42.55.Lt; 42.62.Eh  相似文献   

11.
We use a 13CO2 laser as optical pumping source to search for new THz laser lines generated from 13CH3OH. Nineteen new THz laser lines (also identified as far-infrared, FIR) ranging from 42.3 μm (7.1 THz) to 717.7 μm (0.42 THz) are reported. They are characterized in wavelength, offset, relative polarization, relative intensity, and optimum working pressure. We have assigned eight laser lines to specific rotational energy levels in the excited state associated with the C-O stretching mode.  相似文献   

12.
Thirteen new submillimetre emission lines have been observed when pumping CH3OD using isotopic CO2 lasers, and fourteen when pumping CD3OD. Three isotopic CO2 lasers were used12C16O2,12C18O2, and13C16O2. The new lines were observed in a Fabry-Perot resonator. The wavelength ranges observed were from 55 to 320 m for CH3OD and from 66 to 531 m for CD3OD. The polarisation of the submillimetre laser lines relative to the CO2 pump line has also been determined.  相似文献   

13.
The potential of the Stark effect as a method for assigning far-infrared emission lines observed in infrared laser-pumped lasers is examined. The technique is applied to previously unassigned lines in CO2 laser-pumped CH3OH. Seventeen lines are shown to form an interrelated pattern and on the basis of combination relations a set of energy levels is identified which is not predicted by current models for the vibrationally excited CH3OH molecule.  相似文献   

14.
We report the discovery of 57 new fir laser lines from13CD3OH molecule optically pumped by a waveguide CO2 laser of 300 MHz tunability. For all lines, precise frequency offset measurements between the CO2 line center and the center of the absorbing13CD3OH line were performed using the transferred Lamb-Dip technique. We have also measured directly the frequency of seven FIR laser lines by heterodyning with already known laser lines. We present a complete list of all known laser lines (134) and frequency measurements (24) for this molecule.Work supported by CNPq, FAPESP, FAEP-Brasil, and CNR-Italia  相似文献   

15.
Methanol (CH3OH) is considered today one of the most important active media for the generation of laser radiation in the far-infrared (FIR) spectral region. Together with ten of its other isotopic species, it is responsible for the major part of the laser lines generated by the optical pumping technique. Due to the extreme importance of those molecules as laser generators, we understood that there was a necessity of a comprehensive work which would include as much pratical information as possible about each line.Chang et al(1) early recognized methanol as a source of strong FIR laser lines. Since then, more than 100 papers were published containing information about new laser emission. Recently, Moruzzi et al(114) presented a review of 575 lines produced by12CH3OH. In the present paper, we have extended the review to the various isotopic modifications of this molecule (namely13CH3OH, CD3OH,13CD3OH, CD3OD,13CD3OD, CH3OD, CH 3 18 OH, CH2DOH, CH2DOD and CHD2OH), a total of nearly 2000 lines with wavelengths ranging from 19µm to 3030µm.  相似文献   

16.
The operation of a cw FIR laser in the presence of a strong electric field is described. A hybrid metal-dielectric waveguide is used and the cavity length is scanned to study how the frequency and power of the laser depend on the field strength. The results have also been checked by heterodyning with a conventional reference laser. We report the results obtained for the 496 μm line of CH3F and the 70.5 μm and 119 μm lines of CH3OH. A large frequency tunability of almost ±40 MHz is obtained in the best case with power levels in the mW range. A very simple theoretical model accounts for the experimental results. We also report the appearance of a new FIR line at about 204 μm when CH3OH is pumped by the 9 μmP(34) of CO2 in the presence of an electric field larger than 1.2 KV/cm.  相似文献   

17.
A laser magnetic resonance spectrometer has been used to discover and subsequently measure a far-infrared laser emission: the 166.6-micron line of CH2F2, optically pumped by the 9P24 CO2 laser. By recording spectra for the NH radical, the frequency of this laser emission has been determined to be 1799950±13 MHz. Spectra for the NH radical were also recorded with two other far-infrared laser emissions: the 160.4-micron line of N2H4 (9P46 CO2 pump) and the 328.6-micron line of 13CH3OH (9P12 CO2 pump). From the NH spectra, a discrepancy of 2.1 GHz with the previously measured laser frequency was identified for the 160.4-micron line. A three-laser heterodyne system was then used to remeasure the frequency to be 1868475.5±0.5 MHz. The NH spectra were also used to determine the frequency for the 328.6-micron line to be 912366±7 MHz, in agreement with the value previously calculated from the Rydberg–Ritz combination principle. PACS 07.57.Hm; 32.60.+i; 42.62.Eh  相似文献   

18.
We have measured the frequencies of 12 known and 3 new submillimeter laser lines obtained by pumping12CH3OH with a cw waveguide CO2 laser in a Fabry-Perot far infrared resonator. We have also measured the relative polarization and the pumping CO2 frequency offset for each line.Supported in part by a joint grant with the U.S. National Science Foundation # INT80-19014 and the Brazilian Conselho Nacional de Pesquisas (CNPq).Work of the U.S. Government; not subject to U.S. copyright.  相似文献   

19.
Through the optical pump technique we have reinvestigated the CHD2OH molecule as a source of far-infrared (FIR) laser lines using for the first time a CO2 laser lasing on regular, hot, and sequence bands. As a consequence, we present here spectroscopic data of 16 new FIR laser transitions from this molecule. Furthermore, we also present a catalogue of all FIR laser lines generated from CHD2OH. Received: 13 July 2001 / Revised version: 25 October 2001 / Published online: 14 May 2002  相似文献   

20.
27 new, large offset, FIR laser lines from13CH3OH and one from13CD3OH have been discovered by pumping with a high tunability waveguide CW CO2 laser. Optoacoustic measurements of isotopic methyl alcohol have also been performed and the pump offsets of the new and of previously known lines have been measured and checked. Frequency tunability by Stark effect has been observed for 6 strong lines. Some assignments are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号