首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
For the first time, we have studied the potential-energy curves, spectroscopic terms, vibrational levels, and the spectroscopic constants of the ground and low-lying excited states of NiI by employing the complete active space self-consistent-field method with relativistic effective core potentials followed by multireference configuration-interaction calculations. We have identified six low-lying electronic states of NiI with doublet spin multiplicities, including three states of Delta symmetry and three states of Pi symmetry of the molecule within 15 000 cm(-1). The lowest (2)Delta state is identified as the ground state of NiI, and the lowest (2)Pi state is found at 2174.56 cm(-1) above it. These results fully support the previous conclusion of the observed spectra although our computational energy separation of the two states is obviously larger than that of the experimental values. The present calculations show that the low-lying excited states [13.9] (2)Pi and [14.6] (2)Delta are 3 (2)Pi and 3 (2)Delta electronic states of NiI, respectively. Our computed spectroscopic terms, vibrational levels, and spectroscopic constants for them are in good agreement with the experimental data available at present. In the present work we have not only suggested assignments for the observed states but also computed more electronic states that are yet to be observed experimentally.  相似文献   

2.
The low-lying XSigma+, a3Delta, A1Delta, b3Sigma+, B1Pi, c3Pi, C1Phi, D1Sigma+, E1Pi, d3Phi, and e3Pi electronic states of RhB have been investigated at the ab initio level, using the multistate multiconfigurational second-order perturbation (MS-CASPT2) theory, with extended atomic basis sets and inclusion of scalar relativistic effects. Among the eleven electronic states included in this work, only three (the X1Sigma+, D1Sigma+, and E1Pi states) have been investigated experimentally. Potential energy curves, spectroscopic constants, dipole moments, binding energies, and chemical bonding aspects are presented for all electronic states.  相似文献   

3.
We have studied the potential-energy curves and the spectroscopic constants of the ground and low-lying excited states of NbC by employing the complete active space self-consistent field method with relativistic effective core potentials followed by multireference configuration-interaction calculations. We have identified 23 low-lying electronic states of NbC with different spin multiplicities and spatial symmetries within 40,000 cm(-1). At the multireference single and double configuration interaction level of theory the 2sigma+ and 2delta states are nearly degenerated, with the 2delta state located 187 cm(-1) lower than the 2sigma+ state. The estimated spin-orbit splitting for the 2delta state results in a 2delta(3/2) ground state and A 2sigma+ which is placed 650 cm(-1) above the ground state, in reasonable agreement with the experimental result, 831 cm(-1). Our computed spectroscopic constants are in good agreement with experimental values although our results differ from those of a previous density-functional investigation of the excited states of NbC, mainly due to the strong multiconfigurational character of NbC. In the present work we have not only suggested assignments for the observed states but also computed more electronic states that are yet to be observed experimentally.  相似文献   

4.
Ab initio calculations of low-lying electronic states of CrH are presented, including potential energies, dipole and transition dipole moment (TDM) functions, and radiative lifetimes for X (6)Sigma(+), A (6)Sigma(+), 3 (6)Sigma(+), 1 (6)Pi, 2 (6)Pi, 3 (6)Pi, and (6)Delta. Calculation of dynamic correlation effects was performed using the multistate complete active space second-order perturbation method, based on state-averaged complete active space self-consistent-field reference wave functions obtained with seven active electrons in an active space of 16 molecular orbitals. A relativistic atomic natural orbital-type basis set from the MOLCAS library was used for Cr. Good agreement is found between the current calculations and experiment for the lowest two (6)Sigma(+) states, the only states for which spectroscopic data are available. Potential curves for the 3 (6)Sigma(+) and 2 (6)Pi states are complicated by avoided crossings with higher states of the same symmetry, thus resulting in double-well structures for these two states. The measured bandhead T(0)=27 181 cm(-1), previously assigned to a (6)Pi<--X (6)Sigma(+) transition, is close to our value of T(0)=28 434 cm(-1) for the 2 (6)Pi state. We tentatively assign the ultraviolet band found experimentally at 30 386 cm(-1) to the 3 (6)Pi<--X (6)Sigma(+) transition for which the computed value is 29 660 cm(-1). The A (6)Sigma(+)<--X (6)Sigma(+) TDM and A (6)Sigma(+) lifetimes are found to be in reasonable agreement with previous calculations.  相似文献   

5.
Ab initio configuration interaction calculations have been performed for the X 1Sigma+ and B 1Sigma+ electronic states of LiCl. Potential energy curves, dipole moment functions, and dipole transition moments have been computed for internuclear distances between R = 2.5a0 and 50a0. Single- and double-excitation configuration interaction wave functions were constructed using molecular orbitals obtained from a two-state averaged multiconfiguration self-consistent-field calculation. This procedure yielded an accurate energy splitting between the covalent and ionic separated-atom limits. The calculated avoided crossing of the X and B state curves occurs at R = 16.2a0, in close agreement with previous calculations using a semiempirical covalent-ionic resonance model. X 1Sigma+ state spectroscopic constants are in excellent agreement with experimental values.  相似文献   

6.
Ab initio based configuration interaction calculations have been carried out to study the low-lying electronic states and spectroscopic properties of the heaviest nonradioactive silicon chalcogenide molecule and its monopositive ion. Spectroscopic constants and potential energy curves of states of both SiTe and SiTe+ within 5 eV are reported. The calculated dissociation energies of SiTe and SiTe+ are 4.41 and 3.52 eV, respectively. Effects of the spin-orbit coupling on the electronic spectrum of both the species are studied in detail. The spin-orbit splitting between the two components of the ground state of SiTe+ is estimated to be 1880 cm(-1). Transitions such as 0+ (II)-X1Sigma(+)0+, 0+ (III)-X1Sigma(+)0+, E1Sigma(+)0+ -X1Sigma(+)0+, and A1Pi1-X1Sigma(+)0+ are predicted to be strong in SiTe. The radiative lifetime of the A1Pi state is less than a microsecond. The X(2)2Pi(1/2)-X(1)2Pi(3/2) transition in SiTe+ is allowed due to spin-orbit mixing. However, it is weak in intensity with a partial lifetime for the X2 state of about 108 ms. The electric dipole moments of both SiTe and SiTe+ in their low-lying states are calculated. The vertical ionization energies for the ionization of the ground-state SiTe to different ionic states are also reported.  相似文献   

7.
NF (nitrogen monofluoride, fluoroimidogen) is isoelectronic with O2, and, like O2, it has a triplet configuration in the ground state, with two low-lying metastable singlet excited states. The dipole moment of the a 1Delta excited state was measured in 1973 to be 0.37 +/- 0.06 D; at the time its polarity was assumed to be normal (i.e., with the negative charge on the fluorine). However, high-level electronic structure calculations, which reproduce with high accuracy the known spectroscopic constants of the ground and excited states of NF, predict a dipole moment of -0.388 D for a 1Delta NF, indicating that, despite the electronegativities, this molecule carries a positive charge on fluorine. The other singlet state is predicted to have an even larger negative dipole moment; the ground-state triplet should have a very small positive moment. Singlet NF resembles in this respect CO and BF, from the N2 isoelectronic series, both of which also have negative dipole moments.  相似文献   

8.
The potential energy curves and spectroscopic constants of the ground and 32 low-lying electronic states of ZrC have been studied by employing multireference configuration interaction methods, in conjunction with relativistic effective core potentials and 5s3p3d1f, 3s3p1d basis sets con Zr and C, respectively. We have determined that the ground state is (3)Sigma(+). However there are two low-lying (1)Sigma(+) states (below 5000 cm(-1)) which strongly interact resulting in avoided crossings. The lowest (1)Sigma(+) state corresponds to a combination of 1sigma(2) Xsigma(2) 1pi(4) configurations whereas the second is an open shell singlet 1sigma(2) 2sigma(1) 3sigma(1) 1pi(4). Several avoided crossings were observed, for (1)Pi, (3)Pi, (1)Delta, (3)Sigma(+), and (3)Delta states. We have identified (3)Pi and (1)Pi lying at 4367 and 5797 cm(-1), respectively. The results are in good agreement with the recent experimental findings of Rixon et al. [J. Mol. Spectrosc. 228, 554 (2004)], and indicate that the (3)Pi-(3)Sigma(+), and (1)Pi-(1)Sigma(+), bands located between 16 000-19 000 cm(-1) are extremely complex due to near degeneracy of several (1)Pi and (3)Pi states. We also have identified a (1)Sigma(+) state in the same region that may interfere with the (1)Pi emission bands. The present results not only shed further light into the spectra of ZrC but also predict yet to be observed systems.  相似文献   

9.
The optical spectrum of diatomic OsC has been investigated for the first time, with transitions recorded in the range from 17 390 to 22 990 cm(-1). Six bands were rotationally resolved and analyzed to obtain ground and excited state rotational constants and bond lengths. Spectra for six OsC isotopomers, 192 Os 12C (40.3% natural abundance), 190 Os 12C(26.0%), 189 Os 12C(16.0%), 188 Os 12C(13.1%), 187 Os 12C(1.9%), and 186 Os 12C(1.6%), were recorded and rotationally analyzed. The ground state was found to be X 3 Delta 3, deriving from the 4 delta 3 16 sigma 1 electronic configuration. Four bands were found to originate from the X 3 Delta 3 ground state, giving B 0"=0.533 492(33) cm(-1) and r 0 "=1.672 67(5) A for the 192 Os 12C isotopomer (1 sigma error limits); two of these, the 0-0[19.1]2<--X 3 Delta 3 and 1-0[19.1]2<--X 3 Delta 3 bands, form a vibrational progression with Delta G' 1/2=953.019 cm(-1). The remaining two bands were identified as originating from an Omega"=0 level that remains populated in the supersonic expansion. This level is assigned as the low-lying A 3 Sigma 0+ (-) state, which derives from the 4 delta 2 16 sigma 2 electronic configuration. The OsC molecule differs from the isovalent RuC molecule in having an X 3 Delta 3 ground state, rather than the X 2 delta 4, 1 Sigma+ ground state found in RuC. This difference in electronic structure is due to the relativistic stabilization of the 6s orbital in Os, an effect which favors occupation of the 6s-like 16 sigma orbital. The relativistic stabilization of the 16 sigma orbital also lowers the energy of the 4 delta 2 16 sigma 2, 3 Sigma(-) term, allowing this term to remain populated in the supersonically cooled molecular beam.  相似文献   

10.
With several levels of multireference and restricted open-shell single-reference electronic structure theory, optimum structures, relative energetics, and spectroscopic properties of the low-lying (6)Delta, (6)Pi, (4)Delta, (4)Pi, and (4)Sigma(-) states of linear FeNC and FeCN have been investigated using five contracted Gaussian basis sets ranging from Fe[10s8p3d], C/N[4s2p1d] to Fe[6s8p6d3f2g1h], C/N[6s5p4d3f2g]. Based on multireference configuration interaction (MRCISD+Q) results with a correlation-consistent polarized valence quadruple-zeta (cc-pVQZ) basis set, appended with core correlation and relativistic corrections, we propose the relative energies: T(e)(FeNC), (6)Delta(0)<(6)Pi (2300 cm(-1))<(4)Delta (2700 cm(-1))<(4)Pi (4200 cm(-1))<(4)Sigma(-); and T(e)(FeCN), (6)Delta(0)<(6)Pi (1800 cm(-1))<(4)Delta (2500 cm(-1))<(4)Pi (2900 cm(-1))<(4)Sigma(-). The (4)Delta and (4)Pi states have massive multireference character, arising mostly from 11sigma-->12sigma promotions, whereas the sextet states are dominated by single electronic configurations. The single-reference CCSDT-3 (coupled cluster singles and doubles with iterative partial triples) method appears to significantly overshoot the stabilization of the quartet states provided by both static and dynamical correlation. The (4,6)Delta and (4,6)Pi states of both isomers are rather ionic, and all have dipole moments near 5 D. On the ground (6)Delta surface, FeNC is predicted to lie 0.6 kcal mol(-1) below FeCN, and the classical barrier for isocyanide/cyanide isomerization is about 6.5 kcal mol(-1). Our data support the recent spectroscopic characterization by Lei and Dagdigian [J. Chem. Phys. 114, 2137 (2000)] of linear (6)Delta FeNC as the first experimentally observed transition-metal monoisocyanide. Their assignments for the ground term symbol, isotopomeric rotational constants, and the Fe-N omega(3) stretching frequency are confirmed; however, we find rather different structural parameters for (6)Delta FeNC:r(e)(Fe-N)=1.940 A and r(N-C)=1.182 A at the cc-pVQZ MRCISD+Q level. Our results also reveal that the observed band of FeNC originating at 27 236 cm(-1) should have an analog in FeCN near 23 800 cm(-1) of almost equal intensity. Therefore, both thermodynamic stability and absorption intensity factors favor the eventual observation of FeCN via a (6)Pi<--(6)Delta transition in the near-UV.  相似文献   

11.
The electronic structure of a series of low-lying excited triplet and quintet states of scandium boride (ScB) was examined using multireference configuration interaction (including Davidson's correction for quadruple excitations) and single-reference coupled cluster (CC) methods with averaged natural orbital (ANO) basis sets. The CC approach was used only for the lowest quintet state. The authors have analyzed eight low-lying triplets 3Sigma-(2), 3Sigma+, 3Pi(3), and 3Delta(2) dissociating to Sc(2D)/B(2P) atoms and eight low-lying quintet states 5Sigma-, 5Sigma+, 5Pi(2), 5Phi, and 5Delta(3) dissociating to Sc(4F)/B(2P) atoms. They report the potential energy curves and spectroscopic parameters of ScB obtained with the multireference configuration interaction (MRCI) technique including all singly and doubly excited configurations obtained with the ANO-S basis set. For the two lowest states they obtained also improved ANO-L spectroscopic constants, dipole and quadrupole moments as well as scalar relativistic effects based on the Douglas-Kroll-Hess Hamiltonian. They provide the analysis of the bonding based on Mulliken populations and occupation numbers. Since the two lowest states, 3Sigma- and 5Sigma-, lie energetically very close, their principal goal was to resolve the nature of the ground state of ScB. Their nonrelativistic MRCI(Q) (including Davidson correction) results indicate that the quintet is more stable than the triplet by about 800 cm(-1). Inclusion of scalar relativistic effects reduces this difference to about 240 cm(-1). The dissociation energies for 5Sigma- ScB range from 3.20 to 3.30 eV while those for the 3Sigma- range from 1.70 to 1.80 eV.  相似文献   

12.
The potential energy curves and spectroscopic constants of the ground and 29 low-lying excited states of MoC with different spin and spatial symmetries within 48 000 cm(-1) have been investigated. We have used the complete active space multiconfiguration self-consistent field methodology, followed by multireference configuration interaction (MRCI) methods. Relativistic effects were considered with the aid of relativistic effective core potentials in conjunction with these methods. The results are in agreement with previous studies that determined the ground state as X (3)Sigma(-). At the MRCISD+Q level, the transition energies to the 1 (3)Delta and 4 (1)Delta states are 3430 and 8048 cm(-1), respectively, in fair agreement with the results obtained by DaBell et al. [J. Chem. Phy. 114, 2938 (2001)], namely, 4003 and 7834 cm(-1), respectively. The three band systems located at 18 611, 20 700, and 22 520 cm(-1) observed by Brugh et al. [J. Chem. Phy. 109, 7851 (1998)] were attributed to the excited 11 (3)Sigma(-), 14 (3)Pi, and 15 (1)Pi states respectively. At the MRCISD level, these states are 17 560, 20 836, and 20 952 cm(-1) above the ground state respectively. We have also identified a (3)Pi state lying 14 309 cm(-1) above the ground state. The ground states of the molecular ions are predicted to be (4)Sigma(-) and (2)Delta for MoC(-) and MoC(+), respectively.  相似文献   

13.
By correlating all electrons and employing core-tuned correlation consistent basis sets of quintuple-zeta quality, we applied multireference and coupled-cluster methods to study 32 electronic states of the diatomic BH molecule, two bound states of BH(-), and three states of the linear HBBH molecule. We have constructed full potential energy curves and profiles, reporting binding energies, geometries, spectroscopic parameters, dipole moments, and energy separations, whereas our numerical results are in excellent agreement with available experimental numbers. We are trying as well to interpret the binding modes of a large number of the examined states. 18 states of BH are of Rydberg character, with the BH(-) anion revealing similar structural characteristics to the isoelectronic CH species. The first three states of HBBH X 3Sigma g (-), a 1Delta g, and b 1Sigma g + diabatically correlate to two a 3Pi BH fragments, they are similar to the states b 3Sigma g (-), B 1Delta g, and B' 1Sigma g + of the isoelectronic molecule C2, however, their ordering follows that of the first three states of the O2 molecule.  相似文献   

14.
Ab initio based relativistic configuration interaction calculations have been performed to study the electronic spectrum of the heaviest tin chalcogenide and its monopositive ion. Potential energy curves and spectroscopic constants of low-lying states of both species within 7 eV are reported. The ground-state dissociation energies of SnTe and SnTe+ are computed to be 3.48 and 2.50 eV, respectively. The spin-orbit splitting between the two components of the X 2Pi state of SnTe+ is about 3030 cm(-1). Effects of the strong spin-orbit coupling on the potential curves and spectroscopic properties of both the species are investigated in detail. The electric dipole moments of some of the low-lying states of SnTe and SnTe+ are reported. Transition moments of some important spin-allowed and spin-forbidden transitions are calculated from the configuration interaction wave functions. The radiative lifetime of the excited E 1sigma0+(+) state of SnTe is about 39 ns. The X2-X1 transition in SnTe+ is found to be more probable than the similar transition in the lighter ions. The vertical ionization energy of SnTe in the ground state is estimated to be 8.22 eV.  相似文献   

15.
Accurate calculations of the low-lying singlet and triplet electronic states of thiozone, S(3), have been carried out using large multireference configuration interaction wave functions. Cuts of the full potential energy surfaces along the stretching and bending coordinates have been presented, together with the vertical excitation spectra. The strong experimentally observed absorption around 395 nm is assigned to the 1 (1)B(2) state, which correlates to ground state products. Absorption at wavelengths shorter than 260 nm is predicted to lead to singlet excited state products, S(2) (a (1)Delta(g))+S((1)D). The spectroscopic properties of the X (3)Sigma(g) (-), a (1)Delta(g), and b (1)Sigma(g) (+) electronic states of the S(2) radical have also been accurately characterized in this work. The investigations of the low-lying electronic states were accompanied by accurate ground state coupled cluster calculations of the thermochemistry of both S(2) and S(3) using large correlation consistent basis sets with corrections for core-valence correlation, scalar relativity, and atomic spin-orbit effects. Resulting values for D(0)(S(2)+S) and SigmaD(0) for S(3) are predicted to be 61.3 and 162.7 kcal/mol, respectively, with conservative uncertainties of +/-1 kcal/mol. Analogous calculations predict the C(2v)-D(3h) (open-cyclic) isomerization energy of S(3) to be 4.4+/-0.5 kcal/mol.  相似文献   

16.
The electronic structure of the ground and low-lying states of the diatomic fluorides TiF, VF, CrF, and MnF was examined by multireference and coupled cluster methods in conjunction with extended basis sets. For a total of 34 states we report binding energies, spectroscopic constants, dipole moments, separation energies, and charge distributions. In addition, for all states we have constructed full potential curves. The suggested ground state binding energies of TiF(X (4)Phi), VF(X (5)Pi), CrF(X (6)Sigma(+)), and MnF(X (7)Sigma(+)) are 135, 130, 110, and 108 kcal/mol, respectively, with first excited states A (4)Sigma(-), A (5)Delta, A (6)Pi, and a (5)Sigma(+) about 2, 3, 23, and 19 kcal/mol higher. In essence all our numerical findings are in harmony with experimental results. For all molecules and states studied it is clear that the in situ metal atom (M) shows highly ionic character, therefore the binding is described realistically by M(+)F(-).  相似文献   

17.
The optical spectrum of diatomic RuC has been recorded from 17 800 to 24 200 cm(-1). Three previously unidentified excited electronic states were analyzed and identified as having Omega' = 0, Omega' = 2, and Omega' = 3. The Omega' = 3 state was determined to be a 3Delta3 state that is suggested to arise from a mixture of the 10sigma(2)11sigma(2)5pi(3)2delta(3)12sigma(1)6pi(1) and 10sigma(2)11sigma(1)5pi(3)2delta(3)12sigma(2)6pi(1) electronic configurations. Three additional bands belonging to the previously observed [18.1] (1)Pi<--X (1)Sigma(+) system were analyzed to obtain B(e) (')=0.558 244(48) cm(-1), alpha(e) (')=0.004 655(27) cm(-1), omegae' = 887.201(37) cm(-1), and omega(e) 'xe' = 5.589(7) cm(-1) for the 102Ru 12C isotopomer (1sigma error limits). A Rydberg-Klein-Rees analysis was then performed using the determined spectroscopic constants of the [18.1] 1Pi state, and similar analyses were performed for the previously observed states. The resulting potential energy curves are provided for the 100Ru 12C, 101Ru 12C, 102Ru 12C, and 104Ru 12C isotopic species.  相似文献   

18.
Adiabatic potential energy surfaces for the six lowest singlet electronic states of N(2)O (X (1)A('), 2 (1)A('), 3 (1)A('), 1 (1)A("), 2 (1)A(") and 3 (1)A(")) have been computed using an ab initio multireference configuration interaction (MRCI) method and a large orbital basis set (aug-cc-pVQZ). The potential energy surfaces display several symmetry related and some nonsymmetry related conical intersections. Total photodissociation cross sections and product rotational state distributions have been calculated for the first ultraviolet absorption band of the system using the adiabatic ab initio potential energy and transition dipole moment surfaces corresponding to the lowest three excited electronic states. In the Franck-Condon region the potential energy curves corresponding to these three states lie very close in energy and they all contribute to the absorption cross section in the first ultraviolet band. The total angular momentum is treated correctly in both the initial and final states. The total photodissociation spectra and product rotational distributions are determined for N(2)O initially in its ground vibrational state (0,0,0) and in the vibrationally excited (0,1,0) (bending) state. The resulting total absorption spectra are in good quantitative agreement with the experimental results over the region of the first ultraviolet absorption band, from 150 to 220 nm. All of the lowest three electronically excited states [(1)Sigma(-)(1 (1)A(")), (1)Delta(2 (1)A(')), and (1)Delta(2 (1)A("))] have zero transition dipole moments from the ground state [(1)Sigma(+)(1 (1)A('))] in its equilibrium linear configuration. The absorption becomes possible only through the bending motion of the molecule. The (1)Delta(2 (1)A('))<--X (1)Sigma(+)((1)A(')) absorption dominates the absorption cross section with absorption to the other two electronic states contributing to the shape and diffuse structure of the band. It is suggested that absorption to the bound (1)Delta(2 (1)A(")) state makes an important contribution to the experimentally observed diffuse structure in the first ultraviolet absorption band. The predicted product rotational quantum state distribution at 203 nm agrees well with experimental observations.  相似文献   

19.
Highly correlated ab initio calculations have been performed for an accurate determination of the electronic structure and of the spectroscopy of the low lying electronic states of the ZnF system. Using effective core pseudopotentials and aug-cc-pVQZ basis sets for both atoms, the potential curves, the dipole moment functions, and the transition dipole moments between relevant electronic states have been calculated at the multireference-configuration-interaction level. The spectroscopic constants calculated for the X(2)Sigma(+) ground state are in good agreement with the most recent theoretical and experimental values. It is shown that, besides the X(2)Sigma(+) ground state, the B(2)Sigma(+), the C(2)Pi, and the D(2)Sigma(+) states are bound. The A(2)Pi state, which has been mentioned in previous works, is not bound but its potential presents a shoulder in the Franck-Condon region of the X(2)Sigma(+) ground state. All of the low lying quartet states are found to be repulsive. The absorption transitions from the v=0 level of the X(2)Sigma(+) ground state toward the three bound states have been evaluated and the spectra are presented. The potential energy of the ZnF(-) molecular anion has been determined in the vicinity of its equilibrium geometry and the electronic affinity of ZnF (EA=1.843 eV with the zero energy point correction) has been calculated in agreement with the photoelectron spectroscopy experiments.  相似文献   

20.
The lowest-lying X1Sigma+, a3Phi, b3II, c5Delta, A1Phi, and B1II electronic states of CoN have been investigated at the ab initio MRCI and MS-CASPT2 levels, with extended atomic basis sets and inclusion of scalar relativistic effects. Among the singlet states, the A1Phi and B1II states have been described for the first time. Potential energy curves, excitation energies, spectroscopic constants, and bonding character for all states are reported. Comparison with other early transition-metal nitrides (ScN, TiN, VN, and CrN), isoelectronic (NiC) and isovalent (RhN and IrN) species has been made, besides analyzing the B1II <=> X1+ electronic transition in terms of Franck-Condon factors, Einstein coefficients, and radiative lifetimes. At both levels of theory, the following energetic order has been obtained: X1Sigma+, a3Phi, b3II, c5Delta, A1Phi, and B1II, with good agreement with experimental results. In contrast, previous DFT and MRCI calculations predicted the ground state to be the 5Delta state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号