首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Owing to the inhomogeneous state resulting from the doping of a small number of Eu ions into Laa/3Sr5/3Mn2O7, from the resulting single crystal (La0.8Eu0.2)a/3Sr5/3Mn2O7 we have observed the magnetization jump, the resistivity jump, as well as the relaxation phenomena. For (Lao.sEuo.2)a/3Sr5/3Mn2O7, it has a very delicate ground state due to the interplays among spin, charge, orbital, lattice degrees of freedom. Consequently, the magnetization state is sensitive to temperature, magnetic field, as well as time. Meanwhile, the evolution of the magnetization with time shows a spontaneous jump when both the temperature and the magnetic field are constant. Similar step-like behaviours are also observed in resistivity. All these results suggest that Eu doping can greatly modulate the physical properties of Laa/3Sr5/3Mn2O7 and cause such interesting behaviours.  相似文献   

2.
徐芳  白洋  艾芬  乔利杰 《中国物理 B》2008,17(12):4652-4655
The magnetic and dielectric properties of Sr-substituted Zn2-Y hexagonal ferrites (Ba2-x SrxZn2Fe12O22, 1.0 〈 x ≤ 1.5) are studied in this paper. Sr substitution will lead to the variation of cation occupation, which influences both the magnetic and electric properties. As Sr content x rises from 1.0 to 1.5, magnetic hysteresis loop gets wider gradually and the permeability drops rapidly due to the transformation from ferrimagnetic to antiferromagnetic phase. Moreover, permittivity rises with increasing Sr content. Under a certain external magnetic field, the phase transition of helical spin structure of Ba0.5Srl.5Zn2Fe12O22 at about 295 K seems to open a possibility for the room-temperature ferroelectricity induced by magnetic field. But its low resistivity prevents the observation of ferroelectric and magnetoelectric properties at room-temperature.  相似文献   

3.
An elastic Ising model for a one-dimensional diatomic spin chain is proposed to explain the ferroelectricity induced by the collinear magnetic order with a low-excited energy state. A statistical theory based on this model is developed to calculate the electrical and magnetic properties of Ca3CoMnO6, a typical quasi-one-dimensional diatomic spin chain system. The calculated ferroelectric polarization and dielectric susceptibility show a good agreement with recently reported data on Ca3Co2-xMnxO6 (x ≈0.96) (Phys. Rev. Lett. 100 047601 (2008)), although the predicted magnetic susceptibility does not coincide well with experiment. We also address the rationality and deficiency of this model by including a first-order correction which improves the consistency between the model and experiment.  相似文献   

4.
Jie Li 《中国物理 B》2022,31(4):47502-047502
With a series of 1.0 wt%Bi$_{2}$O$_{3}$-$x$ wt% CuO ($x =0.0$, 0.2, 0.4, 0.6, and 0.8) serving as sintering additives, Ni$_{0.23}$Cu$_{0.32}$Zn$_{0.45}$Fe$_{2}$O$_{4}$ ferrites are successfully synthesized at a low temperature (900 $^\circ$C) by using the solid state reaction method. The effects of the additives on the phase formation, magnetic and dielectric properties as well as the structural and gyromagnetic properties are investigated. The x-ray diffraction (XRD) results indicate that the added Bi$_{2}$O$_{3}$-CuO can lower the synthesis temperature significantly without the appearing of the second phase. The scanning electron microscope (SEM) images confirm that Bi$_{2}$O$_{3}$ is an important factor that determines the sintering behaviors, while CuO affects the grain size and densification. With CuO content $x=0.4$ or 0.6, the sample shows high saturation magnetization, low coercivity, high real part of magnetic permeability, dielectric permittivity, and small ferromagnetic resonance linewidth ($\Delta H$). The NiCuZn ferrites are a promising new generation of high-performance microwave devices, such as phase shifters and isolators.  相似文献   

5.
Tina Raoufi  Jincheng He 《中国物理 B》2023,32(1):17504-017504
We present a study on the magnetocaloric properties of a CaBaCo$_{4}$O$_{7}$ polycrystalline cobaltite along with research on the nature of magnetic phase transition. The magnetization as a function of temperature identifies the ferrimagnetic to paramagnetic transition at a Curie temperature of 60 K. Moreover, a Griffiths-like phase is confirmed in a temperature range above $T_{\rm C}$. The compound undergoes a crossover from the first to second-order ferrimagnetic transformation, as evidenced by the Arrott plots, scaling of the universal entropy curve, and field-dependent magnetic entropy change. The maximum of entropy change is 3 J/kg$\cdot$K for $\Delta H = 7$ T at ${T}_{\rm C}$, and a broadening of the entropy peak with increasing magnetic field indicates a field-induced transition above $T_{\rm C}$. The analysis of the magnetic entropy change using the Landau theory reveals the second-order phase transition and indicates that the magnetocaloric properties of CaBaCo$_{4}$O$_{7}$ are dominated by the magnetoelastic coupling and electron interaction. The corresponding values of refrigerant capacity and relative cooling power are estimated to be 33 J/kg and 42 J/kg, respectively.  相似文献   

6.
Shijun Qin 《中国物理 B》2022,31(9):97503-097503
The single crystal of cubic perovskite BaFeO$_{3}$ shows multiple magnetic transitions and external stimulus sensitive magnetism. In this paper, a 5%-Co-doped BaFeO$_{3}$ (i.e. BaFe$_{0.95}$Co$_{0.05}$O$_{3})$ single crystal was grown by combining floating zone methods with high-pressure techniques. Such a slight Co doping has little effect on crystal structure, but significantly changes the magnetism from the parent antiferromagnetic ground state to a ferromagnetic one with the Curie temperature $T_{\rm C} \approx 120$ K. Compared with the parent BaFeO$_{3}$ at the induced ferromagnetic state, the saturated magnetic moment of the doped BaFe$_{0.95}$Co$_{0.05}$O$_{3}$ increases by about 10% and reaches 3.64 $\mu_{\rm B}$/f.u. Resistivity and specific heat measurements show that the ferromagnetic ordering favors metallic-like electrical transport behavior for BaFe$_{0.95}$Co$_{0.05}$O$_{3}$. The present work indicates that Co-doping is an effective method to tune the magnetic and electric properties for the cubic perovskite phase of BaFeO$_{3}$.  相似文献   

7.
Lu Peng 《中国物理 B》2023,32(1):17102-017102
The structure of the all-d-metal alloy Ni$_{50-x}$Co$_{x}$Mn$_{25}$V$_{25}$ ($x = 0$-50) is investigated by using theoretical and experimental methods. The first-principles calculations indicate that the most stable structure of the Ni$_{2}$MnV alloy is face-centered cubic (fcc) type structure with ferrimagnetic state and the equilibrium lattice constant is 3.60 Å, which is in agreement with the experimental result. It is remarkable that replacing partial Ni with Co can turn the alloy from the fcc structure to the B2-type Heusler structure as Co content $x > 37$ by using the melting spinning method, implying that the d-d hybridization between Co/Mn elements and low-valent elements V stabilizes the Heusler structure. The Curie temperature $T_{\rm C}$ of all-d-metal Heuser alloy Ni$_{50-x}$Co$_{x}$Mn$_{25}$V$_{25}$ ($x > 37$) increases almost linearly with the increase of Co due to that the interaction of Co-Mn is stronger than that of Ni-Mn. A magnetic transition from ferromagnetic state to weak magnetic state accompanying with grinding stress induced transformation from B2 to the dual-phase of B2 and fcc has been observed in these all-d-metal Heusler alloys. This phase transformation and magnetic change provide a guide to overcome the brittleness and make the all-d-metal Heusler alloy interesting in stress and magnetic driving structural transition.  相似文献   

8.
The epitaxial (single crystal-like) Pr0.4La0.1Sr0.5MnO3 (PLSMO) and Nd0.35La0.15Sr0.5MnO3 (NLSMO) thin films are prepared and characterized, and the electric and magnetic properties are examined. We find that both PLSMO and NLSMO have their own optimum deposition temperature (To) in their growing into epitaxial thin films. When the deposition temperature is higher than To, a c-axis oriented but polycrystalline thin film grows; when the deposition temperature is lower than To, the thin film tends to be a-axis oriented and also polycrystalline. The most important point is that for the epitaxial PLSMO and NLSMO thin films the electronic phase transitions are closely consistent with the magnetic phase transitions, i.e. an antiferromagnetic phase corresponds to an insulating state, a ferromagnetic phase corresponds to a metallic state and a paramagnetic phase corresponds to a semiconducting state, while for the polycrystalline thin films the electronic phase transitions are always not consistent with the magnetic transitions.  相似文献   

9.
Zhi-Biao Xu 《中国物理 B》2022,31(8):87504-087504
The high-performance electromagnetic (EM) wave absorption material Ba(CoTi)$_{x}$Fe$_{12-2x}$O$_{19}$@BiFeO$_{3}$ was prepared by solid-state reaction, and its EM wave absorption properties were deeply studied. The results revealed that Ba(CoTi)$_{x}$Fe$_{12-2x}$O$_{19}$@BiFeO$_{3}$ could obtain excellent absorption properties in hundreds of megahertz by adjusting the Co$^{2+}$-Ti$^{4+}$ content. The best comprehensive property was obtained for $x=1.2$, where the optimal reflection loss ($RL$) value reaches $-30.42$ dB at about 600 MHz with thickness of 3.5 mm, and the corresponding effective absorption band covers the frequency range of 437 MHz-1 GHz. Moreover, the EM wave absorption mechanism was studied based on the simulation methods. The simulated results showed that the excellent EM wave absorption properties of Ba(CoTi)$_{x}$Fe$_{12-2x}$O$_{19}$@BiFeO$_{3}$ mainly originated from the internal loss caused by natural resonance, and the interface cancelation further improved the absorption properties and resulted in $RL$ peaks.  相似文献   

10.
侯志灵  曹茂盛  袁杰  宋维力 《中国物理 B》2010,19(1):17702-017702
This paper reports that single-phase γ-Y2Si2O7 is prepared via a sufficient blending and cold-pressed sintering technique from Y2O3 powder and SiO2 nanopowder. It studies the dielectric properties of γ-Y2Si2O7 as a function of the temperature and frequency. The γ-Y2Si2O7 exhibits low dielectric loss and non-Debye relaxation behaviour from 25 to 1400℃ in the range of 7.3-18 GHz. The mechanism for polarization relaxation of the as-prepared γ-Y2Si2O7 differing from that of SiO 2 is explained. Such particular dielectric properties could potentially make specific attraction for extensive practical applications.  相似文献   

11.
E.Yüzüak  B.Emre  Y.Elerman}  A.Yücel} 《中国物理 B》2010,19(5):57501-057501
The crystal structure,magnetic and magnetocaloric characteristics of the pseduo ternary compounds of Tb5Ge2 xSi2 xMn2x(0 ≤ 2x ≤ 0.1) were investigated by x-ray powder diffraction and magnetization measurements.The x-ray powder diffraction results show that all compounds preserve the monoclinic phase as the majority phase and all the synthesized compounds were observed to be ferromagnetic from magnetization measurements.Magnetic phase transitions were interpreted in terms of Landau theory.Maximum isothermal magnetic entropy change value(20.84 J.kg-1.K-1) was found for Tb5Ge1.95Si1.95Mn0.1 at around 123 K in the magnetic field change of 5 T.  相似文献   

12.
Ya-Nan Li 《中国物理 B》2022,31(4):47203-047203
Increasing the phonon scattering center by adding nanoparticles to thermoelectric materials is an effective method of regulating the thermal conductivity. In this study, a series of Ca$_{3}$Co$_{4}$O$_{9}/x$ wt.% CNTs ($x=0$, 3, 5, 7, 10) polycrystalline ceramic thermoelectric materials by adding carbon nanotubes (CNTs) were prepared with sol-gel method and cold-pressing sintering technology. The results of x-ray diffraction and field emission scanning electron microscopy show that the materials have a single-phase structure with high orientation and sheet like microstructure. The effect of adding carbon nanotubes to the thermoelectric properties of Ca$_{3}$Co$_{4}$O$_{9}$ was systematically measured. The test results of thermoelectric properties show that the addition of carbon nanotubes reduces the electrical conductivity and Seebeck coefficient of the material. Nevertheless, the thermal conductivity of the samples with carbon nanotubes addition is lower than that of the samples without carbon nanotubes. At 625 K, the thermal conductivity of Ca$_{3}$Co$_{4}$O$_{9}$/10 wt.% CNTs sample is reduced to 0.408 W$\cdot$m$^{-1}\cdot$K$^{-1}$, which is about 73% lower than that of the original sample. When the three parameters are coupled, the figure of merit of Ca$_{3}$Co$_{4}$O$_{9}$/3 wt.% CNTs sample reaches 0.052, which is 29% higher than that of the original sample. This shows that an appropriate amount of carbon nanotubes addition can reduce the thermal conductivity of Ca$_{3}$Co$_{4}$O$_{9}$ ceramic samples and improve their thermoelectric properties.  相似文献   

13.
We have performed magnetization measurements and electron spin resonance (ESR) on polycrystalline manganites of Nd0.5Sr0.5-xBaxMnO3 (x = 0.1). Phase separation and phase transitions are observed from the susceptibility and the ESR spectra data. Between 260 K (~ Tc) and 185 K (~ TN), the system coexists of the paramagnetic phase and the ferromagnetic (FM) phase. Between 185 K and 140 K, the system coexists of the FM phase and the antiferromagnetic (AFM) phase. These results indicate that the system has a very complex magnetic state due to the origin of the instability stemming from manganite Nd0.5Sr0.4Ba0.1MnO3 by partially substituting the larger Ba^2+ ions for the smaller Sr^2+ ions.  相似文献   

14.
郝延明  周严  赵淼 《中国物理》2005,14(7):1449-1452
通过X-射线衍射及磁测量手段研究了Dy2AlFe13Mn3化合物的结构及磁性质。研究结果表明Dy2AlFe13Mn3化合物具有六角相的Th2Ni17型结构。通过X-射线热膨胀测定法发现Dy2AlFe13Mn3化合物在245到344K的温度范围内存在负热膨胀现象,其平均热膨胀系数为α=-1.1×10-4K-1K-1。在105到360K的温度范围内,通过比较磁性状态下的晶胞参数和由高温顺磁状态外延得到的低温顺磁状态下的晶胞参数间的差别计算了Dy2AlFe13Mn3化合物的本征磁致伸缩。结果表明Dy2AlFe13Mn3化合物的本征体磁致伸缩ωS在105到245K的温度范围内随着温度的升高而增大,由105K时的7.0×10-3 增加到245K时的9.1×10-3。随着温度的进一步升高,ωS反而减小。沿c轴方向的本征线磁致伸缩λc随着温度的升高而减小。基面内的本征线磁致伸缩λa在105到270K的温度范围内随着温度的升高而增大,从105K时的0.8×10-3增大到270K时的3.4×10-3,然后随着温度的进一步升高而减小。  相似文献   

15.
Strontium and oxygen co-doped La1.937Sr0.063CuO4+δ superconductor with Tc≈ 40K, which is obtained by oxidizing strontium-doped starting ceramic sample La1.937Sr0.063CuO4 in NaC10 solution, is annealed under different conditions to allow interstitial oxygen to redistribute. The evolution of the intrinsic superconducting property with the oxygen redistribution is studied in detail by magnetic measurements in various fields. It is found that there occurs the electronic phase separation from the single superconducting phase with Tc ≈ 40 K into two coexisting superconducting states with values of Tc: 15 and 40K or of 15 and 35 K in this system, depending on annealing condition. Our results indicate that the 15, 35 and 40 K superconducting phases associated with the excess oxygen redistribution are all thermodynamically meta-stable intrinsic states in this Sr/O co-doped cuprate.  相似文献   

16.
Wei Hu 《中国物理 B》2022,31(9):98202-098202
The spinel-type LiMn$_{2}$O$_{4}$ is a promising candidate as cathode material for rechargeable Li-ion batteries due to its good thermal stability and safety. Experimentally, it is observed that in this compound there occur the structural phase transitions from cubic ($Fd\bar{3}m)$ to tetragonal ($I4_{1}/{amd}$) phase at slightly below room temperature. To understand the phase transition mechanism, we compare the Gibbs free energy between cubic phase and tetragonal phase by including the configurational entropy. Our results show that the configurational entropy contributes substantially to the stability of the cubic phase at room temperature due to the disordered Mn$^{3+}$/Mn$^{4+}$ distribution as well as the orientation of the Jahn-Teller elongation of the Mn$^{3+}$O$_{6}$ octahedron in the the spinel phase. Meanwhile, the phase transition temperature is predicted to be 267.8 K, which is comparable to the experimentally observed temperature. These results serve as a good complement to the experimental study, and are beneficial to the improving of the electrochemical performance of LiMn$_{2}$O$_{4}$ cathode.  相似文献   

17.
In this paper first-principles calculations of Ni(111)/α-Al2O3(0001) interfaces have been performed, and are compared with the preceding results of the Cu (111)/α-Al2O3(0001) interface [2004 Phil. Mag. Left. 84 425]. The AI- terminated and O-terminated interfaces have quite different adhesion mechanisms, which are similar to the Cu(111)/α Al2O3(0001) interface. For the O-terminated interface, the adhesion is caused by the strong O-2p/Ni-3d orbital hybridization and ionic interactions. On the other hand, the adhesion nature of the Al-terminated interface is the image-like electrostatic and Ni-Al hybridization interactions, the latter is substantial and cannot be neglected. Charge transfer occurs from Al2O3 to Ni, which is opposite to that in the O=terminated interface. The charge transfer direction for the Al-terminated and O-terminated Ni(111)/α-A1203(0001) interfaces is similar to that in the corresponding Cu(111)/α- Al2O3(0001) interface, but there exist the larger charge transfer quantity and consequent stronger adhesion nature, respectively.  相似文献   

18.
($1-x$)MnFe$_{2}$O$_{4}$ (MFO)/$x$ZnMn$_{2}$O$_{4}$ (ZMO) ($x=0$, 0.2, 0.5, 0.8, and 1.0) nanocomposite samples were prepared using co-precipitation procedure. The phase percentage, cell parameters, and crystallite size of MFO and ZMO phases in each nanocomposite sample were calculated using Rietveld refinement procedure. The x-ray diffraction (XRD) analysis and Fourier-transform infrared spectroscopy techniques established the variation in the lattice parameters of each phase are due to permutation of all cations among the octahedral and tetrahedral sites of MFO and ZMO. The different oxidation states of different ions in all samples were determined using x-ray photoelectron spectroscopy (XPS) technique. The variation in absorbance of the nanocomposite samples with composition parameter ($x$) is dependent on the wavelength region. The optical bandgap of the nanocomposite samples is decreased as the content of ZMO phase increased. The effect of alloying on the refractive index, extinction coefficient, dielectric constant, optical conductivity, and the nonlinear optical behaviors of all samples were studied in detail. The nanocomposite sample $x=0.5$ disclosed upgraded optical parameters with the highest refractive index, optical conductivity, and PL intensity, which nominate it to be functional in various application fields.  相似文献   

19.
Yan Liu 《中国物理 B》2022,31(11):117305-117305
The steady-state and transient electron transport properties of $\beta $-(Al$_{x}$Ga$_{1-x}$)$_{2}$O$_{3}$/Ga$_{2}$O$_{3}$ heterostructures were investigated by Monte Carlo simulation with the classic three-valley model. In particular, the electronic band structures were acquired by first-principles calculations, which could provide precise parameters for calculating the transport properties of the two-dimensional electron gas (2DEG), and the quantization effect was considered in the $\varGamma $ valley with the five lowest subbands. Wave functions and energy eigenvalues were obtained by iteration of the Schrödinger-Poisson equations to calculate the 2DEG scattering rates with five main scattering mechanisms considered. The simulated low-field electron mobilities agree well with the experimental results, thus confirming the effectiveness of our models. The results show that the room temperature electron mobility of the $\beta $-(Al$_{0.188}$Ga$_{0.812}$)$_{2}$O$_{3}$/Ga$_{2}$O$_{3}$ heterostructure at 10 kV$ \cdot$cm$^{-1}$ is approximately 153.669 cm$^{2}\cdot$V$^{-1}\cdot$s$^{-1}$, and polar optical phonon scattering would have a significant impact on the mobility properties at this time. The region of negative differential mobility, overshoot of the transient electron velocity and negative diffusion coefficients are also observed when the electric field increases to the corresponding threshold value or even exceeds it. This work offers significant parameters for the $\beta$-(Al$_{x}$Ga$_{1-x}$)$_{2}$O$_{3}$/Ga$_{2}$O$_{3}$ heterostructure that may benefit the design of high-performance $\beta$-(Al$_{x}$Ga$_{1-x}$)$_{2}$O$_{3}$/Ga$_{2}$O$_{3}$ heterostructure-based devices.  相似文献   

20.
Haotian Jiang 《中国物理 B》2022,31(4):48102-048102
Bi$_{2}$O$_{2}$Se has been proved to be a promising candidate for electronic and optoelectronic devices due to their unique physical properties. However, it is still a great challenge to construct the heterostructures with direct epitaxy of hetero semiconductor materials on Bi$_{2}$O$_{2}$Se nanosheets. Here, a two-step chemical vapor deposition (CVD) route was used to directly grow the CsPbBr$_{3}$ nanoplate-Bi$_{2}$O$_{2}$Se nanosheet heterostructures. The CsPbBr$_{3}$ nanoplates were selectively grown on the Bi$_{2}$O$_{2}$Se nanosheet along the edges, where the dangling bonds provide the nucleation sites. The epitaxial relationships between CsPbBr$_{3}$ and Bi$_{2}$O$_{2}$Se were determined as ${[200]}_{\rm Bi_{2}O_{2}Se}||{[110]}_{\rm CsPbBr_{3}}$ and ${[110]}_{\rm Bi_{2}O_{2}Se}||{[200]}_{\rm CsPbBr_{3}}$ by transmission electron microscopy characterization. The photoluminescence (PL) results reveal that the formation of heterostructures results in the remarkable PL quenching due to the type-I band arrangement at CsPbBr$_{3}$/Bi$_{2}$O$_{2}$Se interface, which was confirmed by ultraviolet photoelectron spectroscopy (UPS) and Kelvin probe measurements, and makes the photogenerated carriers transfer from CsPbBr$_{3}$ to Bi$_{2}$O$_{2}$Se. Importantly, the photodetectors based on the heterostructures exhibit a 4-time increase in the responsivity compared to those based on the pristine Bi$_{2}$O$_{2}$Se sheets, and the fast rise and decay time in microsecond. These results indicate that the direct epitaxy of the CsPbBr$_{3}$ plates on the Bi$_{2}$O$_{2}$Se sheet may improve the optoelectronic performance of Bi$_{2}$O$_{2}$Se based devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号