首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
 Some novel, non-intrusive, high-frequency, localized optical measurements of turbulence in compressible flows are described. The technique is based upon focusing schlieren optics coupled with high-speed quantitative measurement of light intensity fluctuations in the schlieren image. Measurements of density gradient fluctuations confined to a thin slice of the flowfield are thus obtained. The new instrument was used to investigate the structure of a two-dimensional, adiabatic, wind tunnel wall boundary layer at a Mach number of 3. The measurements were compared to data obtained using hot-wire anemometry and good agreement was found between the two. Distributions of broadband convection velocity of large-scale structures through the boundary later were also measured. In marked contrast to earlier results, it is shown here that the convection velocity is essentially identical to the local mean velocity. Further, results obtained using the VITA conditional sampling technique shed new light on the turbulent boundary layer structure. Overall, the data presented herein serve to validate the new measurement technique. Received: 12 February 1997/Accepted: 31 January 1998  相似文献   

2.
The influence of compressibility on the rapid pressure–strain rate tensor is investigated using the Green’s function for the wave equation governing pressure fluctuations in compressible homogeneous shear flow. The solution for the Green’s function is obtained as a combination of parabolic cylinder functions; it is oscillatory with monotonically increasing frequency and decreasing amplitude at large times, and anisotropic in wave-vector space. The Green’s function depends explicitly on the turbulent Mach number M t , given by the root mean square turbulent velocity fluctuations divided by the speed of sound, and the gradient Mach number M g , which is the mean shear rate times the transverse integral scale of the turbulence divided by the speed of sound. Assuming a form for the temporal decorrelation of velocity fluctuations brought about by the turbulence, the rapid pressure–strain rate tensor is expressed exactly in terms of the energy (or Reynolds stress) spectrum tensor and the time integral of the Green’s function times a decaying exponential. A model for the energy spectrum tensor linear in Reynolds stress anisotropies and in mean shear is assumed for closure. The expression for the rapid pressure–strain correlation is evaluated using parameters applicable to a mixing layer and a boundary layer. It is found that for the same range of M t there is a large reduction of the pressure–strain correlation in the mixing layer but not in the boundary layer. Implications for compressible turbulence modeling are also explored.   相似文献   

3.
K. Mohri  R. Hillier 《Shock Waves》2011,21(3):175-191
Laminar and turbulent computations are presented for annular rectangular-section cavities, on a body of revolution, in a Mach 2.2 flow. Unsteady ‘open cavity flows’ result for all laminar computations for all cavity length-to-depth ratios, L/D (1.33, 10.33, 11.33 and 12.33). The turbulent computations produce ‘closed cavity flows’ for L/D of 11.33 and 12.33. Surface pressure fluctuations at the front corner of the L/D = 1.33 cavity are periodic in some cases depending on the cavity length and depth, the boundary layer at the cavity front lip and the cavity scale. The turbulent computations are supported by experimental schlieren images, obtained using a spark light source, and time-averaged surface pressure data.  相似文献   

4.
Using a diffraction approach the convolution-type integral equation for the laser schlieren signal created by an arbitrary disturbance at low pressure, where refractive index of disturbance is close to unity, in a shock tube (thin optical layer) has been deduced. In the equation electric circuit relaxation processes were taken into account by a response function. The equation was solved with the aid of the regularization method worked out for ill-posed problems. The density structures of the strong shock waves in air have numerically been reconstructed from experimental data ranging shock wave Mach number of –30, and –30 Pa. Received 7 April 1996 / Accepted 20 June 1996  相似文献   

5.
High Reynolds number, low Mach number, turbulent shear flow past a rectangular, shallow cavity has been experimentally investigated with the use of dual-camera cinematographic particle image velocimetry (CPIV). The CPIV had a 3 kHz sampling rate, which was sufficient to monitor the time evolution of large-scale vortices as they formed, evolved downstream and impinged on the downstream cavity wall. The time-averaged flow properties (velocity and vorticity fields, streamwise velocity profiles and momentum and vorticity thickness) were in agreement with previous cavity flow studies under similar operating conditions. The time-resolved results show that the separated shear layer quickly rolled-up and formed eddies immediately downstream of the separation point. The vortices convect downstream at approximately half the free-stream speed. Vorticity strength intermittency as the structures approach the downstream edge suggests an increase in the three-dimensionality of the flow. Time-resolved correlations reveal that the in-plane coherence of the vortices decays within 2–3 structure diameters, and quasi-periodic flow features are present with a vortex passage frequency of ~1 kHz. The power spectra of the vertical velocity fluctuations within the shear layer revealed a peak at a non-dimensional frequency corresponding to that predicted using linear, inviscid instability theory.  相似文献   

6.
The Large Eddy Simulation of closed-loop active flow control applied to a 3D cavity excited by a compressible airflow with a Mach number of 0.6 is presented. The control actuator is an idealized synthetic jet located at the upstream cavity edge, and the control function is supplied by a feedback LMS-type algorithm whose input is a pressure signal measured inside the cavity. The radiated sound, provided directly by the LES simulation, was shown to decrease substantially when active control was applied. A simultaneous reduction of the vertical velocity fluctuations in the shear layer was observed. The intensity of vortical structures inside the cavity was also reduced, although the general aspect of the recirculation zone was not modified. The direct noise computation technique, which supplies the pressure field by solving the fluid mechanics equations, is shown to constitute a powerful tool for studying active aeroacoustic noise control. To cite this article: O. Marsden et al., C. R. Mecanique 331 (2003).  相似文献   

7.
The present paper describes a method to derive information about the acoustic emission of a flow using particle image velocimetry (PIV) data. The advantage of the method is that it allows studying sound sources, the related flow phenomena and their acoustic radiation into the far field, simultaneously. In a first step the time history of two-dimensional instantaneous pressure fields is derived from planar PIV data. In a successive step the Curle’s acoustic analogy is applied to the pressure data to obtain the acoustic radiation of the flow. The test cases studied here are two rectangular cavity flows at very low Mach number with different aspect ratios L/H. The main sound source is located at the cavity trailing edge and it is due to the impingement of vortices shed in the shear layer. It is shown that the flow emits sound with a main directivity in the upstream direction for the smaller aspect ratio and the directivity is more uniform for the larger aspect ratio. In the latter case the acoustic pressure spectra has a broader character due to the impact of the downstream recirculation zone onto the shear layer instabilities, destroying their regular pattern and alternating the main sound source.  相似文献   

8.
空腔流动存在剪切层运动、涡脱落与破裂,以及激波与激波、激波与剪切层、激波与膨胀波和激波/涡/剪切层相互干扰等现象,流动非常复杂,特别是高马赫数(M>2)时,剪切层和激波更强,激波与激波干扰更严重,对数值格式的要求更高,既需要格式耗散小,对分离涡等有很高的模拟精度,又需要格式在激波附近具有较大的耗散,可以很好地捕捉激波,防止非物理解的出现。Roe和HLLC等近似Riemann解格式在高马赫数强激波处可能会出现红玉现象,而HLLE++格式大大改善了这种缺陷,在捕捉高超声速激波时避免了红玉现象的发生,同时还保持在光滑区域的低数值耗散特性。本文在结构网格下HLLE++格式的基础上,通过改进激波探测的求解,建立了基于非结构混合网格的HLLE++计算方法,通过无粘斜坡算例,验证了HLLE++格式模拟高马赫数流动的能力,并应用于高马赫数空腔流动的数值模拟,开展了网格和湍流模型影响研究,验证了方法模拟高马赫数空腔流动的可靠性和有效性。  相似文献   

9.
在低飞行马赫数条件下,乙烯燃料超燃冲压发动机为实现成功点火及稳定燃烧,常使用先锋氢引燃乙烯,本文通过试验研究了多种喷注方案下的超燃燃烧室流动特性、火焰传播特性及燃烧稳定性,喷注方案包括单先锋氢、单乙烯和组合喷注方式.超燃燃烧室入口马赫数为2.0,总温为953 K,总压为0.82 MPa.多种非接触光学测量手段被应用于超...  相似文献   

10.
S. Rubidge  B. Skews 《Shock Waves》2014,24(5):479-488
The Kelvin–Helmholtz instability (KHI) is an instability that takes the form of repeating wave-like structures which forms on a shear layer where two adjacent fluids are moving at a relative velocity to one another. Such a shear layer forms in the Mach reflection of shock waves. This work focuses on experimentally visualising the presence of the KHI in Mach reflection as well as its evolution. Experimentation was performed at shock Mach numbers of 1.34, 1.46 and 1.61. Plane test pieces and parabolic profiled pieces followed by a plane section having wedge angles of 30 \(^\circ \) and 38 \(^\circ \) were tested. Flow field visualisation was performed with a schlieren optical system. The KHI was best visualised with the camera-side knife edge perpendicular to the shear layer (i.e. the axis of sensitivity along the length of the shear layer). The structure and growth of the instability were readily identified. The KHI forms more readily with increasing Mach number and wedge angle. Second-order Euler, and Navier–Stokes numerical simulations of the flow field were also conducted. It was found that the Euler and laminar Navier–Stokes solvers achieved very similar results, both producing the KHI, but at a much less developed state than the experimental cases. The k \(-\epsilon \) solver, however, did not produce the instability.  相似文献   

11.
Instantaneous temperature measurements were obtained in an underexpanded jet using electrostrictive laser-induced gratings. Evaluation of the technique under static, low-pressure conditions provided a baseline uncertainty or precision for single-shot temperature measurements of 4.4% of the local mean temperature, which represents the minimum detectable temperature fluctuation. The underexpanded jet was operated at a nozzle pressure ratio of 2.39 and a fully expanded jet Mach number of 1.19. Data were acquired along the centerline and over two radial traverses through the shear layer. Mean temperature data agree well with expectations, describing the shock-cell structure and the compressible shear layer. The growth in shear-layer width with downstream distance can be identified in the mean and fluctuating temperature measurements. Temperature fluctuations are near the baseline detection limit in the jet core and surrounding ambient air, and reach a maximum in the shear layer. The temperature fluctuation measurements compare well with previous computational and experimental work, confirming the application of the technique to a turbulent, supersonic flow.  相似文献   

12.
The evolution of disturbances in a hypersonic viscous shock layer on a flat plate excited by slow-mode acoustic waves is considered numerically and experimentally. The parameters measured in the experiments performed with a free-stream Mach number M = 21 and Reynolds number Re L = 1.44 · 105 are the transverse profiles of the mean density and Mach number, the spectra of density fluctuations, and growth rates of natural disturbances. Direct numerical simulation of propagation of disturbances is performed by solving the Navier-Stokes equations with a high-order shock-capturing scheme. The numerical and experimental data characterizing the mean flow field, intensity of density fluctuations, and their growth rates are found to be in good agreement. Possible mechanisms of disturbance generation and evolution in the shock layer at hypersonic velocities are discussed. __________ Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 47, No. 5, pp. 3–15, September–October, 2006.  相似文献   

13.
Various scalar equations are proposed, modeling the pressure field in the linear and nonlinear acoustical regimes. They are derived by assuming a flow with a small Mach number and a smaller medium heterogeneity. Such assumptions are well satisfied in the atmospheric boundary layer. Further simplifications can be obtained when less intense turbulent fluctuations are superimposed to a sheared mean flow. In the linear regime, a hierarchy of equations with increasing orders of precision is established. A new equation is found where all terms quadratic with respect to the ambient flow are retained, either related to sound convection by the flow, or to the flow inhomogeneity. Numerical solutions indicate that it is more precise than the equations in the literature for small Mach numbers, but less robust for larger negative Mach numbers. Two generalizations of Lilley’s equation incorporate the effects of turbulent fluctuations. Nonlinear terms are of different origins, either thermodynamical, inertial, or related to the flow shear. For a locally plane wave, they simplify into a single term which appears as the classical Westervelt quadratic nonlinearity convected by the flow. Consequently, all linear equations can easily be generalized to nonlinear ones, such as a new Lilley’s equation augmented with acoustical nonlinearities and turbulent flow fluctuations.  相似文献   

14.
The theory of self-sustaining oscillations of low Mach number, high Reynolds number shear layers, and jets impinging on edges and corners is discussed. Such oscillations generate narrow band sound, and are usually attributed to the formation of discrete vortices whose interactions with the edge or corner produce impulsive pressures that trigger the cyclic formation of new vorticity. A linearized analysis of these interactions is described in which free shear layers are treated as vortex sheets. Details are given for shear flow over wall apertures and shallow cavities, and for jet–edge interactions. The operating stages of the oscillations correspond to complex eigenvalues of the linear theory: for wall apertures and edge tones they are poles in the upper half of the complex frequency plane of the Rayleigh conductivity of the “window” spanned by the shear flow; for shallow wall cavities they are poles of a frequency-dependent drag coefficient. It is argued that the frequencies defined by the real parts of the complex frequencies at these poles determine the operating stage Strouhal numbers observed experimentally. Strouhal number predictions for a shallow wall cavity are in good agreement with data extrapolated to zero Mach number from measurements in air; edge tone predictions are in excellent accord with data from various sources in the literature. Received 3 January 1997 and accepted 13 February 1997  相似文献   

15.
In many flows the turbulence is weakly compressible even at large Mach number. For example, in a compressible boundary layer Ma<5, the differences relative to an incompressible boundary layer understood as being caused by density variations that accompany variations temperature across the layer. Turbulent fluctuations in a boundary layer are therefore expected to be dominated by the effects nonconstant temperature, and low Mach number theories in which fluctuations are not dominant should be applicable to the fluctuating field. However, the analysis of compressible boundary layer DNS data reveals presence of significant acoustic fluctuations. To distinguish acoustic and thermal effects, a numerical decomposition procedure compressible boundary layer fluctuations is applied to determine the and nonacoustic fluctuations. Except for very near the wall, where decomposition procedure is not valid, it is found that the fluctuations are only weakly coupled to the acoustic fluctuations at numbers as high as 6. Received 13 March 2000 and accepted 21 May 2001  相似文献   

16.
In this paper we present the experimental results of a detailed investigation of the flow and acoustic properties of a turbulent jet with Mach number 0·75 and Reynolds number 3·5 103. We describe the methods and experimental procedures followed during the measurements, and subsequently present the flow field and acoustic field. The experiment presented here is designed to provide accurate and reliable data for validation of Direct Numerical Simulations of the same flow. Mean Mach number surveys provide detailed information on the centreline mean Mach number distribution, radial development of the mean Mach number and the evolution of the jet mixing layer thickness both downstream and in the early stages of jet development. Exit conditions are documented by measuring the mean Mach number profile immediately above the nozzle exit. The fluctuating flow field is characterised by means of a hot-wire, which produced radial profiles of axial turbulence at several stations along the jet axis and the development of flow fluctuations through the jet mixing layer. The axial growth rate of the jet instabilities are determined as function of Strouhal number, and the axial development of several spectral components is documented. The directivity of the overall sound pressure level and several spectral components were investigated. The spectral content of the acoustic far field is shown to be compatible with findings of hot-wire experiments in the mixing layer of the jet. In addition, the measured acoustic spectra agree with Tam’s large-scale similarity and fine-scale similarity spectra (Tam et al., AIAA Pap 96, 1996).  相似文献   

17.
The scientific investigation of the nature of shock waves started 130 years ago with the advent of the schlieren method which was developed in the period 1859–1864 by August Toepler. At the very beginning applied to the visualization of heat and flow phenomena, he immediately turned to air shock waves generated by electric sparks, andsubjectively studied the propagation, reflection and refraction of shock waves. His new delay circuit in the microsecond time regime for the first time made it possible to vary electrically the delay time between a spark generating a shock wave and a second spark acting as a flash light source in his chlieren setup. In 1870 Toepler, together with Boltzmann, applied Jamin's interferometric refractometer and extended the visualization to very weak sound waves at the threshold of hearing. Toepler's pioneering schlieren method stimulated Ernst Mach and his team toobjectively investigate the nature of shock waves: they improved Toepler's time delay circuit; continued the study on the reflection of shock waves; introduced shadowgraphy as a modification of the schlieren method; photographed the propagation of shock waves generated by an electric spark and by supersonic projectiles, and improved interferometry. Based on a large number of original documents the paper illuminates the concomitant circumstances of the invention of the schlieren method and its first applications by others. Although the schlieren method is only one of the many methods I had to use, it is a very important one, and I believe that you will enjoy the results as much as I do. Ernst Mach  相似文献   

18.
A double-wedge with a relative thickness d/c > 0.15 forms a vortex street in its wake. This was investigated experimentally in the Mach number range of 0.4 to 0.75. The strength and the frequency of the pressure fluctuations which are produced by the vortices, were measured on the surface of the wedge for different chord length and relative thickness, both in chord- and spanwise direction. The density fluctuations around the profile and in the wake were measured with a Mach-Zehnder interferometer and a schlieren system. Attention was focussed on the question concerning to what extent unsteady flows are affected by wall interferences.  相似文献   

19.
Characteristics of Oscillations in Supersonic Open Cavity Flows   总被引:1,自引:0,他引:1  
Characteristics of oscillations in supersonic open cavity flows are investigated numerically using hybrid RANS/LES (Reynolds-Averaged Navier-Stokes/Large Eddy Simulation) method. The oscillation regimes and feedback mechanisms for the supersonic cavity flows are identified and analyzed. The calculation captures a mixed shear-layer/wake oscillation mode in the flow of Ma = 1.75, where these two modes occur alternately. The shear-layer mode and wake mode are driven by vortex convection-acoustic feedback and absolute instability, respectively. In particular, the results indicate that the feedback-acoustic-wave in the shear-layer mode is probably generated by the reflection of the downstream-traveling pressure wave, associated with the shed vortex in the shear layer, on the aft wall. The cavity flow of Ma = 2.52 is then simulated to see the influence of Mach number. It is found that the increase of Mach number may decrease the amplitude of the fluctuations in the shear layer, inhibiting the transition to wake mode. Furthermore, the influence of upstream injection is also studied, where the results show that the injection only weakens the oscillations and faintly shifts the resonant frequencies.  相似文献   

20.
 A novel optical diagnostic technique, dual hologram shearing interferometry, for measuring density gradients of different phase objects is proposed and demonstrated. The lateral shearing is achieved by using a phase grating. A holographic interferometer has been developed and designed on the base of a single pass Z type conventional schlieren device. The interferometer’s scheme is insensitive to acoustical disturbances, similarly to the conventional schlieren layout, and is capable of recording holograms with a continuous wave laser during the wind tunnel run. The features of the technique make it tolerant to both the temporal coherence of the laser light source and to the relatively low, schlieren quality optical windows of the wind tunnel’s test section. The obtained reconstructed lateral shearing interferograms with a large region of overlap have high contrast and may have an arbitrary orientation and/or spacing of the background interference fringes. It is believed that the proposed approach will become a useful tool for visualization and accurate mapping of the density gradients of gas dynamic flow fields, in wind and shock tunnels, where acoustic noise problems may dramatically affect reference beam holographic schemes. Received: 9 January 1997 / Accepted: 12 April 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号