首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
As papers become acidic and brittle over time, libraries apply mass deacidification processes to their collections in order to neutralize acids and deposit an alkaline reserve in the paper. Books commonly treated by mass deacidification have undergone natural aging of up to 150?years. The risk of alkali-induced degradation of cellulosic material upon mass deacidification remains uncertain. In the present study, the extent of β-elimination-type degradation reactions was investigated by comparing deacidified and non-deacidified counterparts, using deacidified library materials and identical issues of non-deacidified books from second-hand book shops. The study dealt with only naturally-aged papers focusing on investigation of immediate effects of mass deacidification rather than a long-term impact. Gel permeation chromatography coupled with carbonyl group labeling gave insight into cellulose chain cleavage as well as into the behavior of oxidized functionalities. Processes occurring under natural aging conditions were compared to those upon artificial oxidation of model pulps. Library books did not show a significant reduction in molecular weight after mass deacidification compared to the non-deacidified controls, which stands in contrast to oxidized model pulps. The models showed a more pronounced loss of molecular weight upon deacidification treatments. A decrease in carbonyl groups other than reducing ends was found to occur. Thus, oxidized functionalities were found to be reactive in mass-deacidification reactions; the different behavior was traced down to particular regions of oxidative damage along the cellulose chains. In general, β-elimination processes did not pose a large risk factor upon mass deacidification treatments of the naturally-aged library material tested.  相似文献   

2.
Deterioration of historical papers is caused by several processes, such as acid hydrolysis or autoxidation due to the presence of metal ions contained in inks or pigments. Both processes can be studied by fluorescence labeling of carbonyl and carboxyl groups in combination with GPC-MALLS. This technique allows to determine not only the extent of hydrolysis, but also the concentration of oxidized functionalities within very low sample amounts.The thermally induced aging of rag papers with lines of copper pigment has been investigated, simulating green or blue copper pigments in historic wall papers. The cellulose parts with pigment coverage and adjacent pigment-free regions were analyzed separately and compared to paper parts not affected by metal ions. The cellulose underneath and close to the applied pigment strokes was severely affected. Although there was no difference in the molecular weight distribution, distinct differences in the carbonyl and carboxyl content were observed. Copper ion migration is suggested to be one possible explanation for this observation as a strong correlation between distribution of copper ions and carbonyl groups was found. For the first time, a detailed examination of cellulose damage in spatial proximity to metal-containing pigment lines is thus presented.  相似文献   

3.
Summary: Copper corrosion on paper works of art is commonly explained by copper ion-catalysed cellulose oxidation, usually reflected by discoloration of pigment and surrounding paper as well as by loss of mechanical strength. In this study, model paper and historic paper samples, both containing copper pigments, were compared using fluorescence labelling of carbonyl groups and subsequent GPC analysis. The historic paper samples did not show any typical sign of copper pigment induced discoloration, but high brittleness. In artificially copper-corroded paper samples the distribution of carbonyl groups in combination with the molecular weight distribution of cellulose clearly indicated the occurrence of oxidative processes. In contrast, only insignificant oxidative damage was detected in the case of the paper fragments from an original work of art, a codex from the 15th century. Here, mostly degradation by hydrolytic action was revealed. There was no introduction of carbonyl groups into the bulk section of the molecular weight distribution, and the gain in new carbonyl groups corresponded to the number of reducing end groups newly generated by hydrolysis.  相似文献   

4.
Cellulose paper (Whatman no.1, chromatographic grade) was oxidised with 0.1 M sodium metaperiodate at different oxidation levels (0–11 days at room temperature), and analysed with FTIR before and after chemical treatments (reduction, further oxidation, alkaline hydrolysis). The deconvolution of infrared data allowed us to verify that periodate oxidises cellulose in isolated domains, leading to the decrease of crystallinity, in agreement with the results of wide angle X-ray scattering (WAXS). In particular, the alkaline hydrolysis (β-alkoxy fragmentation) followed by mild acid treatment removed the oxidised groups and recovered most of the crystallinity of cellulose, as determined by the FTIR crystallinity index.  相似文献   

5.
Carbonyl and carboxyl groups introduced by oxidative processes during production and purification of celluloses determine intra- and intermolecular interactions and thus application-related bulk and surface properties of cellulosic materials. We report a comprehensive approach to the quantification of carboxyl and carbonyl groups in cellulose films upon reconstitution from NMMO solutions. Measurements of the excess conductivity were combined with the determination of the molecular weight distribution, quantification of the carboxyl and carbonyl group content, crystallinity and film swelling in aqueous solutions. TEMPO-oxidized, NMMO-regenerated cellulose films were additionally analysed as a reference system for extensive cellulose oxidation. Our reported data demonstrate that dissolution of cellulose in NMMO results in the formation of onic acids, chain degradation, increased ionization and film swelling, whereas TEMPO-oxidation introduced carbonyl groups as well as onic and uronic acids causing a significantly increased charging, ion accumulation and swelling even at higher crystallinity.  相似文献   

6.
Degradation of cellulose in historic paper by iron gall ink is a synergistic process of both, acid hydrolysis caused by acidic ink ingredients and oxidation catalyzed by free iron and/or copper ions. The interplay of both reactions was studied according to the CCOA method on historic paper samples. Only minute amounts (few mg) of the samples were required to obtain profiles of naturally present and oxidatively introduced carbonyl groups, which was done by group-selective fluorescence labeling in combination with determination of the molecular weight distribution by GPC-MALLS. In the present study naturally occurring degradation pathways in historic sample papers have been investigated. Different extents of oxidatitive degradation were shown for paper with and without ink. A typical pattern of the molecular weight distribution in naturally aged papers was identified, the peculiar feature being a distinctive shoulder in the region of low molecular weight, roughly between 25,000 and 5,000 g/mol corresponding to a DP between 150 and 30. This pattern was a typical attribute of degraded natural samples: any artificial aging procedures aimed at modeling natural aging processes must thus attempt to reproduce this feature. Although the historic samples had been more severely oxidized than model papers, the inhibition of further oxidation and hydrolysis by the calcium phytate/hydrogen carbonate treatment was evident and could be proven for the first time on the molecular level. Also on plain paper without ink application the oxidation was suppressed and the molecular weight was stabilized on a high level.  相似文献   

7.
Summary. The present paper examines oxidative degradation of cellulose catalyzed by presence of Cu1+and Cu2+ ions in the context of historic paper conservation treatments. Aqueous treatments of degraded papers further spread transition metal ions, such as copper, across the fibre matrix, and therefore augment the detrimental effect of these ions. In the paper industry, the inhibiting effects of magnesium ions on metal-catalyzed degradation of cellulose contaminated with metal impurities have been observed. Also, magnesium compounds dissolved in alcoholic or aqueous solutions are generally used in paper conservation as deacidification agents. Paper samples with artificially produced copper corrosion served as mock-ups for examination and comparison of different treatments which focused on the inhibiting effect of magnesium and antioxidants. Analytical examination of molecular weight distribution, carbonyl content, carboxyl content, and surface pH was performed. Results show an inhibiting effect of magnesium on copper-catalyzed cellulose degradation, although less pronounced than expected.  相似文献   

8.
The kinetics of periodate oxidation of cellulose was followed through the alkaline degradation of the dialdehyde groups by measuring the viscometric degree of polymerisation and the alkali consumption. The obtained results show that a fast but limited attack of periodate occurs in the amorphous region of cellulose, causing the decrease of degree of polymerisation to its levelling-off value. The alkali consumption indicates at least two further slower reactions, that lead to the asymptotic complete oxidation of cellulose units. With the pseudo first-order approximation, the oxidation half-time of these three reactions can be calculated, corresponding to 1.2, 20 and 854 h respectively. In spite of the high oxidation of the analysed samples (up to about 46%), the residue after alkaline degradation shows a relatively high value of degree of polymerisation rather than the narrow molecular weight distribution of oligomers expected from a random oxidation, thus indicating that periodate oxidises cellulose in isolated domains. The sequence of analyses over the same sample utilised in this work (titrimetry, weight loss and viscometry), performed at room temperature in mild conditions, makes it possible to investigate the topochemistry of oxidation of paper and textiles of historic and artistic value with microdistructive techniques on a single, very small fragment of material.  相似文献   

9.
Cellulose is a linear 1,4-β-glucan polymer where the units are able to form highly ordered structures, as a result of extensive interaction through intra- and intermolecular hydrogen bonding of the three hydroxyl groups in each cellulose unit. Alkali has a substantial influence on morphological, molecular and supramolecular properties of cellulose II polymer fibres causing changes in crystallinity. These physical changes were observed herein using ATR-FTIR spectroscopy, following continuous treatment of the cellulose II fabrics with aqueous sodium hydroxide solution under varying condition parameters. Post-treatment, maxima for total crystallinity index and lateral order index, and minima for hydrogen bond intensity, were observed at concentrations of 3.3 and 4.5 mol dm−3 NaOH, when treated at 25 °C and 40 °C, respectively. Under these treatment conditions, it is proposed that maximum molecular reorganisation occurs in the amorphous and quasi-crystalline phases of the cellulose II polymer.  相似文献   

10.
Dissolution of Cellulose in Aqueous NaOH Solutions   总被引:10,自引:0,他引:10  
Dissolution of a number of cellulose samples in aqueous NaOH was investigated with respect to the influence of molecular weight, crystalline form and the degree of crystallinity of the source samples. A procedure for dissolving microcrystalline cellulose was developed and optimized, and then applied to other cellulose samples of different crystalline forms, crystallinity indices and molecular weights. The optimum conditions involved swelling cellulose in 8–9 wt % NaOH and then freezing it into a solid mass by holding it at –20°C. This was followed by thawing the frozen mass at room temperature and diluting with water to 5% NaOH. All samples prepared from microcrystalline cellulose were completely dissolved in the NaOH solution by this procedure. All regenerated celluloses having either cellulose II or an amorphous structure prepared from linter cellulose and kraft pulps were also essentially dissolved in the aqueous NaOH by this process. The original linter cellulose, its mercerized form and cellulose III samples prepared from it had limited solubility values of only 26–37%, when the same procedure was applied. The differences in the solubility of the celluloses investigated have been interpreted in terms of the degrees to which some long-range orders present in solid cellulose samples have been disrupted in the course of pre- treatments.  相似文献   

11.
Preparation of Polyuronic Acid from Cellulose by TEMPO-mediated Oxidation   总被引:11,自引:8,他引:11  
Various cellulose samples were oxidized by 2,2,6,6,-tetramethylpipelidine-1-oxyl radical (TEMPO)-NaBr-NaClO systems, and the effects of oxidation conditions on chemical structures and degrees of polymerization of the products obtained were studied. In the case of regenerated and mercerized celluloses, almost all C6 primary alcohol groups were selectively oxidized to carboxyl groups, and water-soluble polyglucuronic acid (cellouronic acid) sodium salts were obtained almost quantitatively; the degrees of polymerization were influenced greatly by the amount of TEMPO added, and the oxidation time and temperatures. Cellouronic acids prepared from mercerized linter and kraft pulps had size exclusion chromatograms with two separate peaks due to higher and lower molecular weight fractions. On the other hand, only small amounts of carboxyl groups were introduced into native cellulose samples. Since polyglucuronic acids prepared from cellulose by the TEMPO–NaBr– NaClO systems regularly consist of the glucuronic acid repeating unit, differing from the conventional water-soluble cellulose derivatives, they may open new fields of cellulose utilization.  相似文献   

12.
Conversion of dihydroxyl groups to dialdehyde by periodate oxidation is a useful method widely used in derivatization of cellulose to activate the polymer to further reactions as grafting polymerization. To investigate the cellulose behavior at different level of oxidation and to better understand the influence of the crystallinity on the effects induced by oxidative reactions on different cellulose materials, linen and cotton textiles have been oxidized with periodate solutions in different conditions. Oxidized cellulose samples have been characterized by several techniques: solid-state 13C NMR, Wide Angle X-Ray diffraction, and SEM. Moreover the mechanical properties of the untreated and oxidized yarns have been evaluated by means of tensile tests, the oxidation degree has been measured by means of the hydroxylamine hydrochloride method.  相似文献   

13.
Samples of oxidized cellulose (OC) with various carboxyl contents and degrees of crystallinity were obtained by the oxidation of native and mercerized cellulose with a solution of nitrogen(IV) oxide in CCl4. A detailed characterization of these OC samples was performed. The effect of oxidation conditions (concentration of N2O4 in the solution and oxidation time) and starting cellulose material on OC characteristics (carboxyl, carbonyl and nitrogen content, degree of crystallinity and polymerization, surface area and swelling, and acidic properties) was investigated. Reactivity in the oxidation process was higher in mercerized cellulose than in native cellulose. The action of dilute solutions (10–15%) of N2O4 did not affect the degree of crystallinity of cellulose samples. Under these conditions, the oxidation took place mainly in amorphous regions and on the surface of crystallites. Oxidation in a concentrated (40%) N2O4 solution led to the destruction of crystallites, which increased the surface area and swelling of cellulose in water. The surface area and the swelling of OC samples increased with a decrease in the index of crystallinity. The acidic properties of OC were shown to increase with an increase of swelling in water. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 4785–4791, 2004  相似文献   

14.
Degradation of cellulose under alkaline conditions is involved either involuntarily or deliberately in many different cellulose processing steps, such as pulping, bleaching, or aging within the viscose process, and the underlying chemistry has been the topic of numerous studies. When it comes to aging under alkaline conditions—either natural or accelerated (artificial)—the degradation processes are by far less investigated and understood. A prominent example of moderately alkaline cellulosic material is deacidified book paper from libraries which had undergone a mass-deacidification treatment. We studied their aging behavior under accelerated conditions in comparison to non-deacidified duplicates in order to better understand how the alkaline reserve, which was introduced by the deacidification treatment, affects the stability of the books on the long run. GPC analysis of cellulose and determination of carbonyl functionalities were performed, which were critical parameters to achieve a deeper insight into hydrolytic and oxidative changes of cellulose structure upon deacidification treatment and subsequent aging. Also, model book papers impregnated with different amounts of alkaline reserve were used to support the findings from the original book samples. Hydrolytic degradation rates of the original book papers were significantly reduced after mass deacidification compared to the non-deacidified duplicates. The beneficial effect of mass deacidification on cellulose stability was found to be strongly related to the amount of alkaline reserve deposited, independent of varying parameters of book papers. Although some indication of alkali-induced β-elimination was found (a minor decrease of the along-chain carbonyl content in the original deacidified book papers during aging), it did not occur to an extent that significantly influenced the molar mass of cellulose. The beneficial effect of retarded hydrolytic degradation by mass deacidification thus clearly outweighed possible negative alkalinity effects of the deposited alkaline reserve.  相似文献   

15.
Stable spruce cellulose suspensions were generated in NaOH/urea aqueous solutions and used to make thermally induced gels with various swelling ratios and compressive strengths. Wood cellulose cannot be easily dissolved in water or any common organic solvent due to its high molecular weight, which largely limits its applications. Spruce cellulose was hydrolyzed by diluted sulfuric acid of various concentrations and hydrolysis times. The dissolution of these partially degraded samples was investigated in a NaOH/urea aqueous solution system considered environmentally “green.” The effects of acid hydrolysis on the structure and properties of subsequent thermally induced gels were examined using scanning electron microscopy, swelling and re-swelling experiments, and mechanical testing. The molecular weight of spruce cellulose was significantly reduced by acid hydrolysis, whereas its crystallinity slightly increased because of the removal of amorphous regions. All samples could be partially dissolved in the NaOH/urea aqueous solution and formed stable suspensions. Hydrolyzed cellulose samples with lower molecular weight exhibited a higher solubility. Rheological experiments showed these cellulose suspensions could form gels easily upon heating. A porous network structure was observed in which dissolved cellulose was physically crosslinked upon heating and then regenerated to form a three-dimensional network, where the dispersed swollen cellulose fibers filled spaces to reinforce the structure. The swelling behavior and mechanical properties of these ‘matrix-filler’ gels could be controlled by varying the mild acid hydrolysis conditions, which adjusts their degree of solubility. This research provides several opportunities for manufacturing wood cellulose based materials.  相似文献   

16.
This study demonstrates regioselective oxidation of cellulose nanowhiskers using 2.80–10.02 mmols of sodium periodate per 5 g of whiskers followed by grafting with methyl and butyl amines through a Schiff base reaction to obtain their amine derivatives in 80–90 % yield. We found a corresponding increase in carbonyl content (0.06–0.14 mmols/g) of the dialdehyde cellulose nanowhiskers with the increase in oxidant as measured by titrimetric analysis and this was further evidenced by FT-IR spectroscopy. Grafting of amine compounds to the oxidized cellulose nanowhiskers resulted in their amine derivatives, which are found to be partially soluble in DMSO. Therefore, the reduction reaction between amines and carbonyl groups was confirmed through 13C NMR spectra, which was also supported by copper titration, XPS, and FT-IR spectroscopy. Morphological integrity and crystallinity of the nanowhiskers was maintained after the chemical modification as studied by AFM and solid-state 13C NMR, respectively.  相似文献   

17.
Hanji paper, the paper material traditionally used in Korea, is in the focus of the present aging and mechanistic study. As raw materials and historic recipes for paper making are still available for Hanji today, specimen resembling historical material at the point of production can be prepared. While from that starting point, historical material had taken the path of natural aging, newly prepared samples—prepared according to both historic and current recipes—were artificially aged, and both aging modes can be compared. For the first time, an in-depth chemical and mathematical analysis of the aging processes for Hanji is presented. The aging of Hanji paper, resulting in hydrolysis and oxidation processes, was addressed by means of selective fluorescene labeling of oxidized groups in combination with gel permeation chromatography, providing profiles of carbonyl and carboxyl groups relative to the molar mass distribution. Starting Hanji showed the highest molecular weight (>1,400 kDa) ever reported for paper. We have defined two critical parameters for comparison of the paper samples: half-life DP (the time until every chain is split once on average) and life expectancy (the time until an average DP of failure is reached and no further mechanical stress can be tolerated). The two values were determined to be approximately 500 and 4,000 years, respectively, for the Hanji samples, provided there is no UV radiation. The rate of cellulose chain scission under accelerated aging (80 °C, RH 65 %), was about 600 times faster than under natural conditions. In addition, cellulose degradation of Hanji paper under accelerated aging condition was about 2–3 times slower than that of historical rag paper as those used in medieval Europe.  相似文献   

18.
Cellulose in historic paper documents is often damaged by the writing media used, especially iron gall ink or copper pigments. Degradation induced by iron gall ink is suggested to be a synergistic process comprising both hydrolytic and oxidative reactions. These processes were studied on very low sample amounts according to the CCOA and FDAM method, i.e. by fluorescence labeling of carbonyl and carboxyl groups in combination with GPC-MALLS, respectively. This study focused on preventive means to stop the deterioration induced by iron gall ink of cellulose and to prevent further damage, keeping in mind that a suitable conservation treatment has to hinder both, hydrolytic and oxidative processes, at the same time. A combination of the complexing agent calcium phytate and calcium hydrogencarbonate in aqueous solution was proved to give optimum results. To gain insight into long term stability, an aging step was performed after treatment and different ink modifications were tested. Recording the molecular weight distributions and the carbonyl group content over time GPC analysis verified for the first time the preventive effect of this treatment. This effect was not only seen for the ink-covered areas, but extended also to areas remote from the ink lines. Ink containing copper ions responded equally positively to the calcium phytate/hydrogencarbonate treatment as the iron gall ink papers did. Gelatine, sometimes used in a similar way due to an alleged cellulose-stabilizing effect did not have a beneficial influence on cellulose integrity when metal ions were present.  相似文献   

19.
Bending properties and cell wall structure of alkali-treated wood   总被引:1,自引:0,他引:1  
Bending tests and X-ray diffraction studies were conducted on oven-dried wood samples (Picea jezoensis Carr.) treated with various concentrations of aqueous NaOH solution to investigate the influence of alkali treatment on the longitudinal contraction, bending properties, and cellulose structure. The length of the wood samples decreased and the density increased at NaOH concentrations greater than 10%. The Young’s modulus and the specific Young’s modulus decreased and the strain at yield increased for the same concentration range. However, the stress at yield was almost constant for all concentration ranges. X-ray diffraction analysis showed that lattice transformation from cellulose I to cellulose II did not occur during alkali treatment and the crystallinity index decreased at NaOH concentrations greater than 10%. The crystallinity index was linearly correlated with the changes in longitudinal contraction and the bending properties, which indicates that the increase in the proportion of amorphous components of the cellulose influences the longitudinal contraction and the bending properties of wood samples during alkali treatment.  相似文献   

20.
In this study we employed Size Exclusion Chromatography (SEC) and X-ray diffraction to monitor the molecular weight and crystallinity of bacterial cellulose I and II (BC-I, BC-II) and microcrystalline cellulose (MCC) digested with three “pure” Thermobifida fusca cellulases (Cel6A, Cel6B, and Cel9A ). For each enzyme, cellulose crystallinity was found to increase modestly with treatment time. The digestion rate of BC-II was higher than that of BC-I for Cel6A and Cel9A, both endocellulases. SEC results show that the endocellulases create a very rapid decrease in cellulose molecular weight while a slower molecular weight loss was observed with Cel6B, an exocellulase. This work suggests that conversion of native cellulose I to cellulose II by mercerization may beneficially impact the rate of sugar release by cellulases from biomass. In general, lower conversion rates are observed for MCC compared to BC, possibly due to a higher initial crystallinity for MCC. Surface area effects may also be important.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号