首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Yang  Xianwen  Liu  Xiaohui  Yang  Xuan  Zhang  Qiuyan  Zheng  Yunbo  Ren  Yuanlin  Cheng  Bowen 《Cellulose (London, England)》2022,29(2):1263-1281
Cellulose - Polyester/cotton (PET/CO) fabrics usually burn more violently than single-component fabric due to significant differences of two components as well as “wick effect” during...  相似文献   

2.
Dimethylol dihydroxyethylene urea (DMDHEU)-treated cotton fabrics were treated with alkali or alternatively acid followed by alkali for increasing time periods, and their effectiveness in removing the crosslinking agent was investigated by surface (X-ray photoelectron spectroscopy) analysis, bulk analysis, crease recovery angle performance and solubility in specific solvents. The cellulose yield after the chemical stripping processes was established and the effect of the acid and alkali treatments on the degree of polymerisation of the resultant cellulose determined. Surface and bulk analyses and solubility tests suggested that alkali alone could not remove the DMDHEU from the crease-resist-treated cotton fabric. However, a sequential acid/alkali treatment effectively removed the easy-care finish from the cotton fabric and produced a commercially viable yield of cellulose.  相似文献   

3.
The production of light-weight polyester fabrics from a polyester/cotton blended fabric, by means of the enzymatic removal of the cellulosic part of the material, was investigated. The removal of cotton from the blended fabric yielded more than 80% of insoluble microfibrillar material by the combined action of high beating effects and cellulase hydrolysis.Other major features of this enzymatic process for converting cotton fibers into microfibrillar material are bath ratio, enzyme dosage and treatment time.  相似文献   

4.
Flame-retardant polyester/cotton fabrics are increasing in importance in the apparel and household fabrics market. Phosphorus-nitrogen flame-retardant systems developed for 100% cotton are not necessarily effective for polyester/cotton blends. Bromine effectively imparts flame-retardant properties of polyester resins. It has been theorized that systems containing both bromine and phosphorus should be suitable for polyester/cotton blends. A thermoanalytical study was undertaken to elucidate the effect of bromine in flame-retardant polyester/cotton blend fabrics. Fabrics having various ratios of polyester to cotton were treated with THPOH---NH3, which is particularly effective on 100% cotton, and with THPC-urea-PVBr, which was designed for 50/50 polyester/cotton blends. For comparison, data are also presented on a 50/50 polyester blend fabric treated with THPOH---NH3 and with THPC—urea flame retardants plus tris(2,3-dibromopropyl) phosphate in a two-step application. TG and DSC data were obtained in atmospheres of either nitrogen or air, using a DuPont 990 Thermal Analysis System2. The thermal changes are assigned to decompositions of cotton, polyester, char, and resin finish. A comparison is made of the effects caused by the different flame-retardant finishes. Ol values and FF 3-71 data are reported.  相似文献   

5.
Differential thermal analyses (DTA) were made on a series of polyester/cotton blend fabrics before and after treatment with Thpc—urea—poly(vinyl bromide). This flame retardant did not affect the polyester melting endotherm, which was proportional to the polyester content and appeared at approximately 250°C. In nitrogen atmosphere, DTA of the treated blends showed exothermic peaks at 285°C for the cotton decomposition. and at 415°C for the polyester decomposition. In air, DTA of the treated blends showed exothermic peaks at 333°C for cellulose decomposition, at 431°C for polyester decomposition and at 490°C for char decomposition. The Thpc-urea component of the flame retardant is effective on the cotton cellulose portion of the blend; the poly(vinyl bromide) appears to decompose and act in the vapor state on the polyester.  相似文献   

6.
In this paper we discuss the preparation and comparative evaluation of silver (I) [Ag(I)] nonwoven and woven antimicrobial barrier fabrics generated from commercial calcium‐sodium alginates and laboratory prepared sodium carboxymethyl (CM) cotton nonwovens and CM‐cotton printcloth for potential use as wound dressings. Degrees of CM substitution (DS) in cotton nonwoven and printcloth samples by titrimetry were 0.38 and 0.10, respectively. Coordination of Ag(I) with carboxylates on fabrics was effected by ion exchange and nitrates were removed by washing to mitigate nitrate ion toxicity issues. Durability of silver coordinated fabrics was tested by soaking them in deionized water with slight agitation at 50°C. Ag(I) alginates and nonwoven Ag(I)‐CM‐cottons lost structural integrity in water. Ag‐CM‐cotton printcloth samples retained structural integrity even after four soak‐and‐dry cycles, were smooth to the touch when dry, and were smoother when moistened. They could be easily peeled from wound surfaces without inducing trauma. Solid‐state carbon‐13 (13C) nuclear magnetic resonance (NMR) spectrometry was used to observe changes in carbonyl resonances in Ag(I) alginates and Ag(I)‐CM‐printcloth, and the chemical shift positions of carbonyl resonances of uncoordinated and Ag(I) coordinated fabrics did not change. Inductively coupled plasma‐mass spectrometry (ICP‐MS) was used following fabric digestion to determine the total Ag(I) ion content in fabrics. Ag(I) alginates were found to hold about 10–50 mg Ag(I) per gram fabric; and Ag(I) cotton woven and nonwoven fabrics held about 5–10 mg Ag(I) ions per gram fabric. Kinetic release of Ag(I) after soaking once in physiological saline was studied with ICP‐MS to estimate the availability of Ag(I) upon a single exchange with Na(I) ions on wound surfaces. Alginates released between ~13 and 28% of coordinated Ag(I), and CM‐cotton nonwovens and CM‐cotton printcloth released ~14 and 3% of coordinated Ag(I) ions, respectively. Finally, Ag(I) alginates and Ag(I)‐CM‐cotton printcloth samples were evaluated against Gram‐positive Staphylococcus aureus and Gram‐negative Klebsiella pneumoniae. Ag(I) alginates suppressed 99.95% of bacterial growth in vitro. Even after four soak‐and‐dry cycles in deionized water Ag(I)‐CM‐cotton printcloth suppressed 99.99% of bacterial growth in vitro. Published in 2007 by John Wiley & Sons, Ltd.  相似文献   

7.
A new photochemical method for a permanent flame retardant finishing of textiles made of cotton (CO), polyamide (PA) and polyester (PET) is described. Using a mercury vapour UV lamp vinyl phosphonic acid (VPA) can be fixed durable to different fabrics made of CO, PA and PET in the presence of a cross-linking agent and a photo-initiator. After a home laundering cycle up to 50 wt% of the reaction mixture is retained on the fabrics and the absolute phosphorus content was found to be more than 2.0% in all investigated cases. The photochemically modified textiles showed high levels of flame retardant performance and passed a vertical flammability test for protective clothing.  相似文献   

8.
Polyelectrolytes multilayer (PEM) films based on fully biobased polysaccharides, chitosan and phosphorylated cellulose (PCL) were deposited on the surface of cotton fabric by the layer-by-layer assembly method. Altering the concentration of PCL could modify the final loading on the surface of cotton fabrics. A higher PCL concentration (2 wt%) could result in more loading. Attenuated total reflection Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy and energy-dispersive X-ray analysis directly showed that chitosan and PCL were successfully deposited onto the surface of cotton fabric. In the vertical flame test, the cotton fabric with 20 bilayers at the higher PCL concentration (2 wt%) could extinguish the flame. Microcombustion calorimetry results showed that all coated cotton fabrics reduced the peak heat release rate (HRR) and total heat release (THR) relative to the pure one, especially for (CH0.5/PCL2)20, which showed the greatest reduction in peak HRR and THR. Thermogravimetric analysis results showed that the char residue at temperatures ranging from 400 to 700 °C was enhanced compared to that in the pure cotton fabric, especially in the case of higher PCL concentration (2 wt%). The work first provided a PEM film based on fully biobased polysaccharide, chitosan and PCL on cotton fabric to enhance its flame retardancy and thermal stability via the layer-by-layer assembly method.  相似文献   

9.
In this study, cotton fabrics were finished with Aloe vera gel along with 1,2,3,4-butanetetracarboxlic acid as a crosslinking agent using the pad-dry-cure method. The finished fabrics were characterized by Fourier transform infrared spectroscopy. The infrared spectra confirmed that the active ingredients of A. vera gel attached to the hydroxyl groups of cotton fabric via a carboxylic acid cross-linking agent. The antibacterial activity of A. vera-finished fabrics was qualitatively evaluated by the AATCC-147 method and scanning electron microscopy. It was observed that A. vera gel-finished fabric has much less bacterial adhesion. The A. vera gel-finished [concentration ≥3 % (w/v)] cotton fabric inhibited the growth of both gram-positive (Staphylococcus aureus) and gram-negative (Escherichia coli) bacteria. The mechanism of cell death by A. vera gel was evaluated using transmission electron microscopy (TEM). TEM photographs suggested that the cell death is due to the destruction of the bacterial cell wall. The finished fabric was also evaluated for its performance properties such as tensile strength, crease recovery angle, bending length, etc.  相似文献   

10.
A graft-polymerization process with atomized lauryl methacrylate as monomer is used to fabricate fluorine-less and asymmetrically superhydrophobic cotton fabrics. The polymers synthesized in the process can form nanoscale hierarchical structures on the cotton surface, and the surface morphology can be controlled by choosing a suitable solvent or by varying the feeding quantity of the monomer mist stream. After applying the surface modification to cotton fabrics, an asymmetrically superhydrophobic surface is achieved without any additional nanosized particles, and the solvent damages on the cotton fabrics are controllable at a very low level. Surface characterization reveals that the modified side of the cotton fabric has laundering-durable and mechanically stable superhydrophobicity with a water contact angle of more than 150°, whereas the opposite inherits the hydrophilic property of pristine cotton fabric. The modified cotton fabrics are found to have medium-level water-absorbing ability between pristine cotton and PET fabrics, as well as good vapor transmissibility similar to pristine cotton fabric. These properties are of great significance in textile and medical applications.  相似文献   

11.
The possibility of in situ photoreduction of Ag+-ions using TiO2 nanoparticles deposited on cotton and cotton/PET fabrics in the presence of amino acid alanine and methyl alcohol has been discussed. The possible interaction between TiO2, alanine and Ag+-ions was evaluated by FTIR analysis. The fabrication of TiO2/Ag nanoparticles on both fabrics was confirmed by SEM, EDX, XRD, XPS and AAS analyses. Cotton and cotton/PET fabrics impregnated with TiO2/Ag nanoparticles provided maximum reduction of Gram-negative bacteria Escherichia coli and Gram-positive bacteria Staphylococcus aureus. Although excellent antibacterial activity was preserved after ten washing cycles, a significant amount of silver leached out from the fabrics into the washing bath. The perspiration fastness assessment revealed that smaller amounts of silver were also released from the fabrics into artificial sweat at pH 5.50 and 8.00. In addition, deposited TiO2/Ag nanoparticles imparted maximum UV protection to fabrics.  相似文献   

12.
A novel and efficient process is reported for fabrication of electroconductive, self-cleaning, antibacterial and antifungal cellulose textiles using a graphene/titanium dioxide nanocomposite. Cotton fabric was loaded with graphene oxide using a simple dipping coating method. The graphene oxide-coated cotton fabrics were then immersed in TiCl3 aqueous solution as both a reducing agent and a precursor to yield a fabric coated with graphene/titanium dioxide nanocomposite. The crystal phase, morphology, microstructure and other physicochemical properties of the as-prepared samples were characterized by X-ray diffraction, field emission scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, Raman spectroscopy and UV-Vis reflectance spectroscopy. Electrical resistance, self-cleaning performance, antimicrobial activity and cytotoxicity of treated fabrics were also assessed. The electrical conductivity of the graphene/titanium dioxide nanocomposite-coated fabrics was improved significantly by the presence of graphene on the surface of cotton fabrics. The self-cleaning efficiency of the treated fabrics was tested by degradation of methylene blue in aqueous solution under UV and sunlight irradiations. The results indicated that the decomposition rates of methylene blue were improved by the addition of graphene to the TiO2 treatment on fabrics. Moreover, the graphene/titanium dioxide nanocomposite-coated cotton samples had negligible toxicity and possessed excellent antimicrobial activity.  相似文献   

13.
A novel coating formulation to impart ultraviolet (UV) protection property to cotton, Polyethylene trephethalate (PET) and cotton/PET fabrics was prepared and gamma rays as an ionizing radiation was utilized for surface curing. Natural occurring aluminum potassium sulfate (Alum) was used individually and in binary coat with Zinc Oxide (ZnO), to induce the UV-blocking properties. It was found that using Alum (0.3 g/ml) caused a prompt increase in ultraviolet protection factor (UPF) over the uncoated fabrics. Moreover, the incorporated ZnO in the binary coat increased the UPF for two to threefold than the stand-alone Alum coating, specially in case of PET coated fabric. Water absorbance and moisture regain of ZnO and Alum/ZnO coated fabrics showed a decrease over the blank samples, due to the usage of oligomer/monomer combination. On contrary, Alum showed a hydrophilic effect with the increase in its content in the formulation. Surface Electron Microscope showed the homogenous coating of fibers. X-ray diffraction (XRD), energy dispersive X-ray (EDX) and water vapor permeability were also tested for coated samples.  相似文献   

14.
Polycarboxylic acids have been used as nonformaldehyde crosslinking agents for cotton fabrics to replace the traditional N-methylol reagents. In this research, we compared 1,2,3,4-butanetetracarboxylic acid (BTCA) with poly(maleic acid) (PMA) as crosslinking agents for cotton cellulose. BTCA and PMA have similar molecular structures with carboxyl groups bonded to their molecular backbones, and both form five-membered cyclic anhydride intermediates during a curing process. However, BTCA is a more effective crosslinking agent for cotton cellulose than PMA. This is mainly attributed to the differences in the mobility of the anhydride intermediates to access the cellulosic hydroxyl groups during a curing process. The mobility of the anhydride intermediate of PMA is reduced due to its molecular size and multiple bonding between a PMA molecule and cellulose. Consequently, more anhydride and less ester are detected on the cotton fabric treated with PMA than on the fabric treated with BTCA. The amount of the unreacted anhydride intermediate on the fabric treated with PMA is reduced whereas the amount of ester is increased when another hydroxyl-containing compound of low molecular weight is present. Thus, the infrared spectroscopy data show a clear link between the molecular weight of a polycarboxylic acid and its effectiveness for crosslinking cotton cellulose. © 1997 John Wiley & Sons, Inc.  相似文献   

15.
测试和比较了天然棉纤维织物和几种人造可再生纤维素纤维(竹原纤维、莫代尔纤维和天丝纤维)在实验室条件下和大环境堆肥条件下的生物降解性.生物降解行为的测试分别采用ASTM D5988-03、堆肥法和酶催化降解法,以比较几种织物在自然环境和微生物培养基条件下的降解速度;结合红外光谱通过分析降解前后结构的改变研究不同的降解方法对纤维素材料的降解程度.结果表明纤维素类纤维织物均表现出良好的生物降解性,并且人造可再生纤维素纤维的降解速度高于天然棉纤维.和传统的实验室条件下测量织物降解性的方法相比,堆肥中含有更多的微生物和酶活性组分,加速了纤维素材料的分解.  相似文献   

16.
The vapor pressure of water was measured for binary mixtures with cellulose containing fabrics at 37 °C by means of two complementary methods. Different types of fabrics were studied: One consisting exclusively of cellulose fibers, either of natural origin (cotton) or regenerated from solutions in the mixed solvent NMMO/water (Lyocell fibers, CLY) and another kind of fabric containing polyethylene terephthalate (PET) fibers in addition to CLY fibers. The Flory-Huggins interaction parameters χ and their composition dependence calculated from these vapor pressure data are broadly similar for cotton and for CLY, apart from the fact that water interacts somewhat more favorably with CLY than with cotton. In both cases the χ values pass successively a maximum and a minimum as the concentration of water rises. The experiments performed with the fabrics containing two types of fibers demonstrate that the water uptake of PET is negligible as compared with that of cellulose. The results for the system water/cellulose fibers obtained at 37 °C differ fundamentally from corresponding data for 80 °C, reported for cellulose films prepared from solutions in dimethylacetamide + LiCl. The maximum water uptake of cellulose is determined by its degree of crystallinity. In all cases it is possible to model the Flory-Huggins interaction parameters as a function of composition quantitatively by means of an approach subdividing the dilution process conceptually into two separate steps: Contact formation between the dissimilar components (keeping their conformation constant) and subsequent relaxation of the system into the equilibrium state. Similarities and dissimilarities of the systems water/polysaccharide are being discussed in detail.  相似文献   

17.
对涤棉混纺织物进行碱处理,讨论了NaOH用量、温度、时间对涤棉混纺织物性能的影响,并与纯棉织物和纯涤纶织物的碱处理结果进行对比。结果表明,NaOH用量对织物的失重率影响最大,且纯涤纶的失重率和失重速率都明显高于涤棉混纺织物;在常压下,碱处理对棉的影响很小。  相似文献   

18.
Polyester/cotton fabric swith blend ratios of 0/100, 11/89, 20/80, 30/70, 50/50, and 65/35 were investigated via thermogravimetric analysis in both nitrogen and air atmospheres. The samples were heated from ambient to 750°C at a heating rate of 5°C min?1. The same fabrics were analyzed after treatment with tetrakis (hydroxymethyl) phosphonium chloride-urea-poly(vinyl bromide) (Thpc-urea-PVBr) flame retardant.Weight losses observed during pyrolysis were assigned to the cotton and polyester portions of the blends. Both cotton and polyester thermally decompose to yield gases and solid char byproducts. In nitrogen the 100% cotton fabric undergoes one major weight loss between 270 and 370°C, with the maximum rate of weight loss, 0.15 mg/min-mg occurring at 346°C. Thermal decomposition of the 100% polyester occurs over a range of 335–470°C, with the peak rate of weight loss, 0.11 mg/min-mg, measured at 416°C. In an air atmosphere, both volatile gases and solid char by- products of pyrolysis undergo combustion. The combustion reactions are associated with measured weight losses. The maximum rate of weight loss for the cotton portion increases to 0.25 mg/min-mg and occurs at 317°C. The maximum rate of polyester decomposition remains the same in both air and nitrogen, but the temperature decreases to 405°C.  相似文献   

19.
The aim of this study was to introduce a non-formaldehyde inorganic–organic hybrid sol–gel flame-retardant precursor (SiOP) containing phosphorous, nitrogen, and silicon and to compare its functional properties with those of the conventional formaldehyde-containing organic flame-retardant agent, organophosphonate (OP). SiOP was used at concentrations of 2%, 4%, and 8%, and OP was used at a concentration of 200 g/dm3. Both agents were applied to 100% cotton (CO) woven fabric by the pad-dry-cure method under the appropriate conditions. The presence of the SiOP and OP coatings on the CO fabric was confirmed by scanning electron microscopy, energy dispersive X-ray spectroscopy and Fourier-transform infrared spectroscopy. The results of the vertical tests of flammability and the thermogravimetric analyses showed that the presence of the SiOP coating changed the thermal degradation pathway of the CO fabric and resulted in an increase in the thermo-oxidative stability of the cellulose fibres. The thermo-oxidative stability was enhanced by the addition of higher amount of dry solids. At comparable dry solids contents, OP preserved significantly greater flame retardancy and thermo-oxidative stability than did SiOP. These results indicated that the SiOP precursor could not act as an effective alternative to the OP agent in the flame-retardant protection of CO fabric.  相似文献   

20.
An ecological and viable approach for the in situ forming silver nanoparticles (AgNPs) on cotton fabrics has been used. Silver nanocoated fabric of brownish yellow color (AgNPs, plasmon color) was characterized by scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDS) and Fourier transform infrared spectroscopy (FTIR). SEM images revealed that the surface of the modified cotton was rougher than that of normal cotton. In addition, SEM images showed the presence of AgNPs on the surface of the treated fabric. Silver mapping and elemental analysis of the silver nanocoated cotton fabric using EDS confirmed the presence of AgNPs in a homogeneous distribution. Also, FTIR spectra of silver nanocoated sample showed more intense and broad peaks with a slight red shift if compared with those of blank sample indicating the binding of AgNPs with cellulose macromolecules. Different coating levels and the impact of repeated washings have been evaluated against different microbial strains by growth inhibition zone. The results of antimicrobial studies reveal that the presence of a low coating level of nanosilver is enough for producing an excellent and durable antimicrobial cotton fabrics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号