首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The profluorescent nitroxide, 1,1,3,3-tetramethyldibenzo[e,g]isoindolin-2-yloxyl (TMDBIO) was investigated as a probe for the radical-mediated degradation of stabilised polypropylene. TMDBIO has been previously shown to be a sensitive probe for free-radical degradation during the thermo-oxidation of unstabilised polypropylene. Here we report on the effect that adding hindered phenol or phosphite stabilisers to polypropylene has on the free-radical sensing ability of TMDBIO during thermo-oxidation. In addition, novel dual-functional, hindered phenol containing profluorescent nitroxides, 5-[2-(4-hydroxy-3,5-di-tert-butylphenyl)ethenyl]-1,1,3,3-tetramethylisoindolin-2-yloxyl (HSTMIO) and its derivatives were investigated as probes for the radical-mediated degradation of polypropylene. These dual-functional probes were shown to be efficient stabilisers for polypropylene during thermo-oxidation at 150 °C in oxygen and sensors of thermo-oxidation during its early stages, in the so-called “induction period”.  相似文献   

2.
In this study, three profluorescent nitroxides 1,1,3,3-tetramethyldibenzo[e,g]isoindolin-2-yloxyl (TMDBIO), 1,1,3,3-tetramethyl-2,3-dihydro-2-azaphenalene-2-yloxyl (TMAO) and 5-[2-(4-methoxycarbonyl-phenyl)-ethenyl]1,1,3,3-tetramethylisoindoline-2-yloxyl (MeCSTMIO) were tested as probes for radical-mediated damage in polypropylene arising from both UV and thermally initiated sources. These nitroxides possess a very low fluorescence quantum yield due to quenching by the nitroxide group; however, when the free-radical moiety is removed by reaction with alkyl radicals (to give an alkoxyamine), strong fluorescence is observed. The results obtained from this profluorescent nitroxide trapping technique compare favourably with other methods of monitoring degradation, provided the appropriate probe is chosen for the conditions of oxidation, signalling an indication of damage well before other techniques show any response. The technique was also applied to the monitoring of crosslinked polyester coating resins. Differentiation in the oxidative stability of the resins was evident after as little as 200 min where other monitoring techniques require up to 300 h of accelerated degradation. This highlights the sensitivity of this method as well as demonstrating the scope of this technique to assess polymer stability.  相似文献   

3.
This paper describes recent developments in the use of chemiluminescence (CL) and profluorescent nitroxides (PFNs) in probing the “induction period” of polymer oxidation. CL measures the instantaneous rate of reaction of hydroperoxides responsible for initiating degradation and the spreading of oxidation, while PFNs can be used to measure the concentration of alkyl radicals produced in oxidation events and thus provide an integrating sensor for the extent of cumulative damage. The PFN additive acts as an oxidation retarder by competing with oxygen to scavenge the alkyl radicals that generate chain carrying peroxy radicals and so mirrors the performance of hindered amine stabilisers (HAS) in one part of their stabilisation cycle. Using the example of polypropylene (PP) and cis-polyisoprene (PIP) as substrates which can rapidly spread oxidative damage, the factors controlling the reaction of PFNs can be determined from CL and fluorescence as well as infra-red (IR) spectroscopy through the detection of oxidation products as measured by the carbonyl index. Matrix effects on the reactivity are demonstrated using a polyethylene-norbornene copolymer (TOPAS) as carrier for both PIP and the PFN and it is seen that the PFN is a radical scavenger only above Tg of the carrier. When PIP alone is oxidized, the PFN is an integrating sensor for free radical production under ambient conditions for up to twelve months while also stabilizing the polymer. Critically, it is thus able to determine the underlying rate of radical production in the oxidation induction period.  相似文献   

4.
Bis(diphenylphosphino)-2,2-dimethylpropane (PMP) is a highly efficient melt stabiliser of polyethylene. This aryl-alkyl phosphine hinders the degradation of the polymer during processing even in small concentrations and in combination with a phenolic antioxidant its consumption rate is considerably slower than that of phosphites and phosphonites. In this study the reactions of PMP were studied at temperatures corresponding to those used for the processing of polyethylene in order to explore the processing stabilisation mechanism of this additive. Thermal and thermo-oxidative stability were determined by DSC and TGA, respectively by heating PMP in argon and oxygen at 200 and 240 °C. Reactions with peroxy, carbon-centred and oxy radicals, as well as with hydroperoxide were investigated at 200 °C. Reaction products were identified by FT-IR and solution-state NMR spectroscopy. The results revealed that the phosphine studied has sufficient thermal- and thermo-oxidative stability under the processing conditions of polyethylene. It oxidises easily with any oxidising agent including molecular oxygen of air. Consequently, PMP does not only decompose hydroperoxide groups and react with oxy macroradicals during the processing of polyethylene, as claimed by most references on phosphorous antioxidants, but it can also hinder the formation of peroxy macroradicals, i.e., the initiation reaction of thermo-oxidative degradation.  相似文献   

5.
The thermo-oxidative melt degradation of different metallocene polyethylenes (mPEs) was investigated in a torque rheometer open to air at 225 °C and 10 rpm. The mPEs differed essentially according to their initial melt index, molar mass distribution, density and ash content, but one characteristic was changed at a time in order to assess the influence of each specific property in the thermo-oxidative degradation of the PEs investigated. Crosslinking was found to dominate at the early stages of degradation during mastication for most polymers where reactions of alkyl radicals to vinyl groups were considered to be the dominant reaction. Furthermore, discolouration was attributed to both excessive levels of catalyst residues and extensive formation of conjugated systems. Finally, it was concluded that the polymer melt viscosity, i.e., molar mass and shape of molar mass distribution, appeared to govern the processing stability of the mPE. These results confirm the importance of shear as the major source for initiation of free radicals formed by homolytic fission caused via mechanical cleavage of polymer chains.  相似文献   

6.
A profluorescent nitroxide possessing an isoindoline nitroxide moiety linked to a perylene fluorophore was developed to monitor radical mediated degradation of melamine-formaldehyde crosslinked polyester coil coatings in an industry standard accelerated weathering tester. Trapping of polyester-derived radicals (most likely C-radicals) that are generated during polymer degradation leads to fluorescent closed-shell alkoxy amines, which was used to obtain time-dependent degradation profiles to assess the relative stability of different polyesters towards weathering. The nitroxide probe couples excellent thermal stability and satisfactory photostability with high sensitivity and enables detection of free radical damage in polyesters under conditions that mimic exposure to the environment on a time scale of hours rather than months or years required by other testing methods. There are indications that the profluorescent nitroxide undergoes partial photo-degradation in the absence of polymer-derived radicals. Unexpectedly, it was also found that UV-induced fragmentation of the NO–C bond in closed-shell alkoxy amines leads to regeneration of the profluorescent nitroxide and the respective C-radical. The maximum fluorescence intensity that could be achieved with a given probe concentration is therefore not only determined by the amount of polyester radicals formed during accelerated weathering, but also by the light-driven side reactions of the profluorescent nitroxide and the corresponding alkoxy amine radical trapping products. Studies to determine the optimum probe concentration in the polymer matrix revealed that aggregation and re-absorption effects lowered the fluorescence intensity at higher concentrations of the profluorescent nitroxide, but too low probe concentrations, where these effects would be avoided, were not sufficient to trap the amount of polyester radicals formed upon weathering. The optimized experimental conditions were used to assess the impact of temperature and UV irradiance on polymer degradation during accelerated weathering.  相似文献   

7.
The hydrolytic degradation of poly(l-lactide) (PLLA) and the formation of its monomer in the solid and in the melt were investigated at 120-150 °C (in the solid), at 160 °C (in the solid up to 40 min and in the melt exceeding 40 min), and at 170-190 °C (in the melt). Such state difference caused the difference in the degradation behavior of PLLA and the behavior of lactic acid formation, although the degradation of PLLA proceeds via a bulk erosion mechanism, regardless of its state. The crystalline residues were formed at the degradation temperatures below 140 °C, but not at the degradation temperatures above 160 °C. The lactic acid yield exceeding 95% can be successfully attained for all the temperatures of 120-190 °C. The activation energy for hydrolytic degradation values of PLLA were 69.6 and 49.6 kJ mol−1 for the temperature ranges of 120-160 °C (in the solid) and 170-250 °C (in the melt), respectively, and are compared with the reported values.  相似文献   

8.
A range of varying chromophore nitroxide free radicals and their nonradical methoxyamine analogues were synthesized and their linear photophysical properties examined. The presence of the proximate free radical masks the chromophore's usual fluorescence emission, and these species are described as profluorescent. Two nitroxides incorporating anthracene and fluorescein chromophores (compounds 7 and 19, respectively) exhibited two-photon absorption (2PA) cross sections of approximately 400 G.M. when excited at wavelengths greater than 800 nm. Both of these profluorescent nitroxides demonstrated low cytotoxicity toward Chinese hamster ovary (CHO) cells. Imaging colocalization experiments with the commercially available CellROX Deep Red oxidative stress monitor demonstrated good cellular uptake of the nitroxide probes. Sensitivity of the nitroxide probes to H(2)O(2)-induced damage was also demonstrated by both one- and two-photon fluorescence microscopy. These profluorescent nitroxide probes are potentially powerful tools for imaging oxidative stress in biological systems, and they essentially "light up" in the presence of certain species generated from oxidative stress. The high ratio of the fluorescence quantum yield between the profluorescent nitroxide species and their nonradical adducts provides the sensitivity required for measuring a range of cellular redox environments. Furthermore, their reasonable 2PA cross sections provide for the option of using two-photon fluorescence microscopy, which circumvents commonly encountered disadvantages associated with one-photon imaging such as photobleaching and poor tissue penetration.  相似文献   

9.
The influence of melting temperature and time on the thermal behaviour of poly(l-lactic acid) (PLLA) was studied with differential scanning calorimetry (DSC). Different melting conditions were investigated at temperature ranging from 200 to 210 °C, and for time from 2 to 20 min. For lower-molecular-weight PLLA, a single exothermic peak could be observed at cooling rate of 2 °C/min, after melted at different conditions. The obtained peak temperature and degrees of crystallinity dramatically increased with an increase of melting temperature or time. During subsequent heating scans, double melting peaks could be observed, which were significantly affected by prior melting conditions. The degradation of this material in the melt and the melt/re-crystallization mechanism might be responsible for the observations above. Apart from double melting, double cold crystallization peaks were observed during heating traces for this material after fast cooling (20 °C/min) from the melt. Prior melting conditions could significantly influence the cold crystallization behaviour. The competition between the crystallization from the nuclei remained after cooling, and that from spontaneous nucleation might be responsible for the appearance of double peaks. Additionally, the influence of melting conditions on the thermal behaviour of PLLA was dependent on the initial molecular weight.  相似文献   

10.
Metallocene ethylene-1-octene copolymers having different densities and comonomer content ranging from 11 to 36 wt% (m-LLDPE), and a Ziegler copolymer (z-LLDPE) containing the same level of short-chain branching (SCB) corresponding to one of the m-LLDPE polymers, were subjected to extrusion. The effects of temperature (210-285 °C) and multi-pass extrusions (up to five passes) on the rheological and structural characteristics of these polymers were investigated using melt index and capillary rheometry, along with spectroscopic characterisation of the evolution of various products by FTIR, 13C-NMR and colour measurements. The aim is to develop a better understanding of the effects of processing variables on the structure and thermal degradation of these polymers. Results from rheology show that both extrusion temperature and the amount of comonomer have a significant influence on the polymer melt thermo-oxidative behaviour. At low to intermediate processing temperatures, all m-LLDPE polymers exhibited similar behaviour with crosslinking reactions dominating their thermal oxidation. By contrast, at higher processing temperatures, the behaviour of the metallocene polymers changed depending on the level of comonomer content: higher SCB gave rise to predominantly chain scission reactions whereas polymers with lower level of SCB continued to be dominated by crosslinking. This temperature dependence was attributed to changes in the different evolution of carbonyl and unsaturated compounds including vinyl, vinylidene and trans-vinylene.  相似文献   

11.
Polycarbodiimide (CDI) was used to improve the thermal stability of poly(l-lactic acid) (PLA) during processing. The properties of PLA containing various amounts of CDI were characterized by GPC, DSC, rheology, and tensile tests. The results showed that an addition of CDI in an amount of 0.1-0.7 wt% with respect to PLA led to stabilization of PLA at even 210 °C for up to 30 min, as evidenced by much smaller changes in molecular weight, melt viscosity, and tensile strength and elongation compared to the blank PLA samples. In order to examine the possible stabilization mechanism, CDI was reacted with water, acetic acid, l-lactic acid, ethanol and low molecular weight PLA. The molecular structures of the reaction products were measured with FTIR. The results showed that CDI could react with the residual or newly formed moisture and lactic acid, or carboxyl and hydroxyl end groups in the PLA samples, and thus hamper the thermal degradation and hydrolysis of PLA.  相似文献   

12.
Novel profluorescent nitroxides bearing a triazole linker between the coumarin fluorophore and an isoindoline nitroxide were prepared in good yields using the copper-catalyzed azide-alkyne 1,3-dipolar cycloaddition reaction (CuAAC). Nitroxides containing 7-hydroxy and 7-diethylamino substitution on their coumarin rings displayed significant fluorescence suppression, and upon reaction with methyl radicals, normal fluorescence emission was returned. The fluorescence emission for the 7-hydroxycoumarin nitroxide and its diamagnetic analogue was found to be strongly influenced by pH with maximal fluorescence emission achieved in basic solution. Solvent polarity was also shown to affect fluorescence emission. The significant difference in fluorescence output between the nitroxides and their corresponding diamagnetic analogues makes these compounds ideal tools for monitoring processes involving free-radical species.  相似文献   

13.
以自旋标记荧光探针4-((9-acridinecarbonyl)amino)-2,2,6,6-tetramethylpiperidin-1-oxyl(TEMPO-9-AC)研究了卷烟主流烟气中的碳中心自由基。以吸烟机抽吸卷烟,以弱荧光的TEMPO-9-AC作为捕集剂捕集卷烟主流烟气中的碳中心自由基,生成稳定的强荧光的碳中心自由基捕集加合物,以高效液相色谱-三重四极杆串联质谱联用仪(HPLC-MS/MS)对其结构进行了确认,并建立了高效液相色谱-荧光检测(HPLC-FLD)的定量方法。结果表明,方法的检出限为0.318 nmol/cig,相对标准偏差(RSD)为3.5%~9.7%;利用TEMPO-9-AC捕集体系鉴别出了10种碳中心自由基;对5种代表性卷烟烟气中的碳中心自由基进行了定量计算,获得了它们在主流烟气中碳中心自由基的含量数据,并发现碳中心自由基总量与焦油释放量之间具有高度的相关性。本法检出限低,重复性好,适用于卷烟主流烟气中碳中心自由基的结构验证及释放量的检测分析。  相似文献   

14.
In this overview study, two ionic liquids (IL) with different anions (decanoate, tetrafluoroborate) but with the same phosphonium-based cation that showed promising plasticizing/lubricating behavior in polylactic acid (PLA) were screened for their effects on the polymer degradation under thermomechanical, thermo-oxidative (at 160 °C), hydrolytic (100% humidity, 60 °C), conditions, and during soil immersion. Depending on the particular medium and conditions used, degradation was followed by changes in molecular weight, melt viscosity, sample weight and appearance, morphology, crystallinity, acid number, and pH. The effects of the IL containing a decanoate anion were more pronounced on lubrication and also on degradation as evidenced by reduced melt viscosities and accelerated thermomechanical, isothermal, hydrolytic, and soil degradation. The IL containing the tetrafluoroborate anion showed higher thermal stability compared with the IL containing decanoate anion as also confirmed from thermal degradation rate constants which were calculated from random chain scission statistics. Accelerated hydrolytic degradation was observed in PLA containing the tetrafluoroborate based IL but to a lesser extent than the decanoate based IL. The catalytic role of the decanoate anion in hydrolytic degradation was confirmed through experiments with model compounds. X-ray diffraction (XRD) data on the materials exposed to soil degradation provided evidence that the initially amorphous polymer attained a certain degree of crystallinity as a result of the significant MW reduction.  相似文献   

15.
Several series of experiments were carried out to check the effect of components on the stability of PP/layered silicate nanocomposites. The amount of organophilic montmorillonite (OMMT) changed between 0 and 6, while that of maleated polypropylene (MAPP) between 0 and 50 vol%. The composites were prepared in an internal mixer at 190 °C. Mixing speed and time were changed to study the effect of processing conditions on stability. The structure of the samples was characterised by various methods, while stability by the induction time of oxidation (OIT), the onset temperature of degradation (OOT) and by colour. Contrary to numerous claims published in the literature, which indicate the positive effect of layered silicates on the stability of polymer nanocomposites, our results clearly proved that both OMMT and MAPP accelerate degradation during processing and deteriorate the properties of PP composites. Residual stability decreases drastically with increasing amounts of both components, chain scission leads to the decrease of viscosity and to inferior strength and deformability. In spite of expectations, the effect of the components is independent of each other. Discoloration is caused mainly by the inherent colour of the filler and it decreases with increasing exfoliation. The most probable reason for decreased stability is the reaction of the components with the stabilisers, but this explanation needs further verification. Processing conditions influence degradation considerably, increasing shear rate and longer residence times lead to more pronounced degradation. The basic stabilization of commercial grade polypropylenes is insufficient to protect the polymer against degradation and without additional stabilization processing under normal conditions results in products with inferior quality.  相似文献   

16.
Thermal degradation behavior of poly(4-hydroxybutyric acid) (P(4HB)) was investigated by thermogravimetric and pyrolysis-gas chromatography mass spectrometric analyses under both isothermal and non-isothermal conditions. Based on the thermogravimetric analysis, it was found that two distinct processes occurred at temperatures below and above 350 °C during the non-isothermal degradation of P(4HB) samples depending on both the molecular weight and the heating rate. From 1H NMR analysis of the residual P(4HB) molecules after isothermal degradations at different temperatures, it was confirmed that the ω-hydroxyl chain-end was remained unchanged in the residual P(4HB) molecules at temperatures below 300 °C, while the ω-chain-end of P(4HB) molecules was converted to 3-butenoyl units at temperatures above 300 °C. In contrast, the majority of the volatile products evolved during thermal degradation of P(4HB) was γ-butyrolactone regardless of the degradation temperature. From these results, it is concluded that during the thermal degradation of P(4HB), the selective formation of γ-butyrolactone via unzipping reaction from the ω-hydroxyl chain-end predominantly occurs at temperatures below 300 °C. At temperatures above 300 °C, both the cis-elimination reaction of 4HB unit and the formation of cyclic macromolecules of P(4HB) via intramolecular transesterification take place in addition to unzipping reaction from the ω-hydroxyl chain-end. Finally, the primary reaction of thermal degradation of P(4HB) at temperatures above 350 °C progresses by the cyclic rupture via intramolecular transesterification of P(4HB) molecules with a release of γ-butyrolactone as volatile product. Moreover, we carried out the thermal degradation tests for copolymer of 93 mol% of 4HB with 7 mol% of 3-hydroxybutyric acid (3HB) to examine the effect of 3HB units on thermal stability of P(4HB).  相似文献   

17.
The kinetics and mechanism of the thermal degradation of poly(diethyl fumarate) (PDEF) were studied by thermogravimetry, as well as by analysis of the thermolysis volatiles and polymer residue. The characteristic mass loss temperatures were determined, as were the overall thermal degradation activation energies of three PDEF samples of varying molar mass. Ethylene and ethanol were present in the thermolysis volatiles at degradation temperatures below 300 °C, while diethyl fumarate was also evidenced at higher degradation temperatures. The amount of monomer increased with increasing degradation temperature. The dependence of the molar mass of the residual polymer on the degradation time and temperature was established and the number of main-chain scissions per monomer unit, s/P0, calculated. A thermal degradation mechanism including de-esterification and random main-chain scission is proposed. The thermal degradation of PDEF was compared to the thermolysis of poly(ethyl methacrylate) (PEMA), poly(diethyl itaconate) (PDEI) and poly(ethyl acrylate) (PEA).  相似文献   

18.
Accelerated thermal and photo-aging of four homopolymers, low-density polyethylene (LDPE), high-density polyethylene (HDPE), polypropylene (PP) and high-impact polystyrene (HIPS), was performed and the impact of subsequent reprocessing conditions on their properties studied. Polymer samples oven-aged at 100 °C for varying periods of time or UV irradiated in a Weather-o-meter (WOM) at λ = 340 nm were reprocessed in a Brabender plasticorder at 190 °C/60 rpm for 10 min. Chemical changes and the evolution of rheological and mechanical properties accompanying the gradual degradation of the individual polymers were monitored and evaluated (DSC, FTIR, colorimetric method, MFI, tensile impact strength). LDPE and HIPS were found to be more susceptible to thermo-oxidation than HDPE and PP, whereas HDPE and PP were affected to a greater extent by UV exposure; the crucial role here is being played by the stabilization of the studied resins. In HDPE the scission and crosslinking reactions competed both in thermo-and photo-degradation. In the case of LDPE, scission prevailed over branching during thermo-oxidation, whereas photo-oxidation of the same sample led predominantly to crosslinking. Abrupt deterioration of the LDPE rheological properties after one week of thermal exposure was suppressed by re-stabilization. The scission reaction was also predominant for PP during thermo-oxidation, and it took place even faster during UV exposure. In the case of HIPS a slight photo-degradation of PS matrix is accompanied by simultaneous crosslinking of the polybutadiene component.  相似文献   

19.
The degradation of polycaprolactone (PCL) was studied in subcritical and supercritical toluene from 250 to 375 °C at 50 bar. The degradation was also investigated in various solvents like ethylbenzene, o-xylene and benzene at 325 °C and 50 bar. The effect of pressure on degradation was also evaluated at 325 °C at various pressures (35, 50 and 80 bar). The variation of molecular weight with time was analyzed using gel permeation chromatography and modeled using continuous distribution kinetics to evaluate the degradation rate coefficients. PCL degrades by random chain scission in subcritical conditions (250-300 °C) and by chain end scission (325-375 °C) in supercritical conditions in toluene. The degradation of PCL in other solvents at 325 °C was by chain end scission under both subcritical and supercritical conditions indicating that the mode of scission depends on the temperature and not on the supercriticality of the solvent. The thermogravimetric analysis of PCL was investigated at various heating rates (2-24 °C/min) and the activation energy was determined using Friedman, Ozawa and Kissinger methods. It was shown that PCL degrades by random scission at lower temperatures and by chain end scission at higher temperatures again indicating that the mode of scission is dependent on the temperature.  相似文献   

20.
The antioxidant activities of four benzofuranones in melt processing of polypropylene (PP) have been investigated using multiple extrusions. The antioxidant activities of those four benzofuranones with different substituent groups have been evaluated using melt flow index (MFI) and yellowness index (Y.I.) of multiple-extruded PP stabilized with those antioxidants. The change of MFI values indicates as follows: firstly, the position of substituent group has a very important effect on the antioxidant activity of benzofuranone in the melt processing of PP i.e. methyl group of 2′-position may prevent the hydrogen donation of benzofuranone toward PP radicals and make the antioxidant activity of benzofuranone in PP decrease; secondly, electronic property of substituent group of para position to 3-reactive hydrogen has little influence on the antioxidant activity. Furthermore, the theory that the formation of antioxidative products due to the dimerization and disproportionation of benzofuranyl radicals is the main reason that induces the discoloration of stabilized PP has been predicted for the first time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号