首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The biodegradability of high density polyethylene films (HDPE), low density polyethylene films (LDPE) and linear low density polyethylene films (LLDPE) with a balanced content of antioxidants and pro-oxidants (manganese + iron or manganese + iron + cobalt) was studied. Abiotic pre-treatment consisting of photooxidation and thermal oxidation corresponding to about three years of outdoor weathering (including 3-4 months of exposure to daylight) was monitored by FTIR and SEC measurements. The oxidized samples were then inoculated with the strain Rhodococcus rhodochrous in mineral medium, and incubated up to 180 days. The metabolic activity of the bacteria was assessed by measuring adenosine triphosphate content (ATP) and the viability of the cells. Complementary experiments were performed by 1H NMR spectroscopy to monitor the biodegradation of soluble molecules excreted from the polymer in the incubation medium. Finally SEM was used to visualize the formation of a biofilm at the surface of the polymer. Three samples among the 12 tested were investigated in compost and soil environments. The results show that the main factor controlling the biodegradability of the polyethylene films is the nature of the pro-oxidant additive and to a lesser extent that of the matrix. Except for the samples containing very high content of cobalt additive, the various polymer films were used as substrates by the bacteria.  相似文献   

2.
A simple statistical thermodynamic argument is presented in which the probability of intramolecular chain folding of normal paraffins and polyethylene in solution is examined. This possibility is based on the existence of low-energy intramolecular conformations which are stable enough to overcome the tendency of a chain molecule to assume a random arrangement in solution. Some rough estimates of the magnitudes of energetic interaction in straight-chain hydrocarbons are made to demonstrate the plausibility of this hypothesis. The experimental support for this model arises from NMR spectra of normal paraffins in aromatic hydrocarbon solvents.  相似文献   

3.
刘佩芳  文利柏 《中国化学》1998,16(3):234-242
The mass transport and charge transfer kinetics of ozone reduction at Nafion coated Au electrodes were studied in 0.5 mol/L H2SO4 and highly resistive solutions such as distilled water and tap water. The diffusion coefficient and partition coefficient of ozone in Nafion coating are 1.78×10-6 cm2·s-1 and 2.75 at 25℃ (based on dry state thickness), respectively. The heterogeneous rate constants and Tafel slopes for ozone reduction at bare Au are 4.1×10-6 cm·s-1, 1.0×10-6 cm·s-1 and 181 mV, 207 mV in 0.5 mol/L H2SO4 and distilled water respectively and the corresponding values for Nafion coated Au are 5.5×10-6 cm·s-1, 1.1×10-6 cm·s-1 and 182 mV, 168 mV respectively. The Au microelectrode with 3 μm Nafion coating shows good linearity over the range 0-10 mmol/L ozone in distilled water with sensitivity 61 μA·ppm-1 ·cm-2, detection limit 10 ppb and 95% response time below 5 s at 25℃. The temperature coefficient in range of 11-30℃ is 1.3%.  相似文献   

4.
王宗宝 《高分子科学》2017,35(4):524-533
The gel-spun ultra-high molecular weight polyethylene(UHMWPE) fibers were prepared at the industrial production line with different gel solution concentrations of 15 wt%, 18 wt% and 24 wt%. The difference in ultimate structure and mechanical properties of UHMWPE fibers for different gel solution concentrations were analyzed by tensile testing, differential scanning calorimetry(DSC), wide angle X-ray diffraction(WAXD) and small angle X-ray scattering(SAXS). With the increase of gel solution concentration, the ultimate mechanical properties of UHMWPE fibers were decreased and the crystallization and orientation of UHMWPE fibers became inferior. Besides, both the average shish length(〈L _(shish)〉) and shish misorientation(B_φ) of UHMWPE fibers were decreased with the increase of gel solution concentration. In addition, the appropriate increase of spinning temperature led to the further optimization of the ultimate structure and mechanical properties of UHMWPE fibers.  相似文献   

5.
Small amounts of certain halogenated compounds are found to have, at most, only a slight enhancing effect on the radiolytic decay rates of added poly-unsaturated compounds in polyethylene, but significantly increase the elastic modulus at 433 K (melt modulus) obtained thereby. Experiments with model chlorine-containing additives suggest that this increase is due to a more random distribution of polymer and monomer mediated crosslinks in the polymer, that it does not result from a significant increase in crosslinking and that it is mediated by chlorine atoms, in a similar manner to radiolytic hydrogen atoms, through facilitation of long range free radical migration. Although low molecular weight chloro-paraffins inhibit radiolytically induced growth of melt modulus in monomer containing polyethylenes, even very small additions of chlorinated polyethylenes, which form a separate phase, increase the melt modulus. This again indicates that the active species is the chlorine radical.  相似文献   

6.
This paper deals with the kinetic modelling of unstabilised polyethylene thermal oxidation, particular attention being paid to the domain of low temperatures, typically below 80 °C. Experimental data show that the temperature dependence of the induction time ti and the steady state rate of oxygen absorption rS display a discontinuity at 80 °C. A model based on the hypothesis that this discontinuity concerns only the PO2 bimolecular combination processes and is essentially explained by the competition between terminating and non-terminating PO2 + PO2 reactions, was proposed. With pertinent values of the Arrhenius parameters of the elementary reactions under consideration, the model fits well the experimental data (in the 40-200 °C temperature range) and is consistent with previously analysed results of radiochemical ageing. According to this model, 35-40% of the bimolecular PO2 combinations would not be terminating at 45 °C and this proportion would increase with the temperature. Concerning terminations, the relative fraction of coupling processes, leading to peroxide bridges, would decrease relatively to the disproportionation processes when the temperature increases.  相似文献   

7.
The surfaces of polyethylene terephthalate (PET) obtained by irradiation with a CO2 pulsed laser in air were studied. The complicated microstructures using various laser wavelengths were observed by scanning electron microscopy (SEM). The changes in chemical and physical properties of the irradiated PET surface were investigated by attenuated total reflectance infrared spectroscopy (ATR-FTIR) and contact angle measurements. ATR-IR spectrum showed that the crystallinity in the surface region decreased due to laser irradiation. The water drop contact angle also decreased with increasing of laser pulses. The density of peroxides formed on the irradiated PET surface were determined by iodide method.  相似文献   

8.
The phase behaviors of the hexane + polydispersed polyethylene (PE) systems were measured to clarify the effect of the molecular weight distribution (MWD) of PE on liquid-liquid (LL) phase boundaries. The weight fraction for the PE portion of a maximum LL phase separation pressure in the LL phase boundary decreased as the polydispersity of PE increased. Moreover, depression of the phase separation pressure from the maximum phase separation pressure on the higher PE weight fraction side was more drastic as the polydispersity of the PE increased. The LL phase boundaries were correlated using the Sanchez-Lacombe equation of state (S-L EOS). For the correlations, the polydispersed PEs were regarded as mixtures of 16 types of monodispersed PEs with different molecular weights, and the characteristic parameters of the S-L EOS, P*, ρ* and T*, were assigned the same values for all monodispersed PEs even though the molecular weights differed. However, the interaction parameters of the hexane-PE pairs depended on the molecular weight of the PE and the temperature. The correlated results capably reproduced the effect of the MWD of the PE on the LL phase boundaries for the hexane + polydispersed PE systems.  相似文献   

9.
A decrease of the rate of high pressure oxidation of very rich methane-oxygen mixtures with increasing oxygen concentration was found. The results were confirmed by kinetic simulation of the process. A very distinct temperature dependence of the rate of oxygen conversion can be explained on the basis of a critical change in the reaction mechanism.Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 1, pp. 53–56, January, 1996.  相似文献   

10.
The present work examined the interactions of Activated Oxygen (AO) and Vacuum UV (VUV) radiation generated by oxygen RF plasma with Ultra-Strong Ultra High Molecular Weight Polyethylene (UHMWPE) fibres. The samples were exposed in the afterglow region, beyond the RF reactor exit. Surface morphology changes were characterized by Atomic Force Microscopy (AFM) in contact and tapping modes and Low-Vacuum (LV) and High-Resolution (HR) Scanning Electron Microscopy (SEM).Simultaneous exposure to AO and VUV caused surface erosion characterized by the formation of ordered domains and a morphological reconstruction into row structure. However, the different imaging techniques showed a variety of morphologies of the same surface depending on the imaging contrast mechanism. An explanation for the origin of these observed morphologies is presented.  相似文献   

11.
傅强 《高分子科学》2011,29(3):377-389
Three types of high-density polyethylene(HDPE)with different molecular weights(high,medium and low)were adopted to evaluate the influence of matrix molecular weight on the structure-property relation of injection-molded HDPE/mica composites through a combination of SEM,2d-WAXS,DSC,DMA and tensile testing.Various structural factors including orientation,filler dispersion,interfacial interaction between HDPE and mica,etc.,which can impact the macroscopic mechanics,were compared in detail among the three HDPE/mica composites.The transcrystallization of HDPE on the mica surface was observed and it exhibited strong matrix molecular weight dependence.Obvious transcrystalline structure was found in the composite with low molecular weight HDPE,whereas it was hard to be detected in the composites with increased HDPE molecular weight.The best reinforcement effect in the composite with low molecular weight HDPE can be understood as mainly due to substantially improved interfacial adhesion between matrix and mica filler,which arises from the transcrystallization mechanism.  相似文献   

12.
The emulsion copolymerization of styrene and methacrylic acid (MAA) was performed in the presence of a relatively new macromonomer, poly(ethylene glycol) ethyl ether methacrylate (PEG-EEM) as a stabilizer. In contrast to similar studies, a macromonomer having relatively shorter polyethylene oxide chain length (i.e., Mn:246, n ≈ 3.0) was selected for this study. Highly uniform and carboxyl functionalized latex particles in the size range of 0.16–0.50 μm were obtained by changing MAA, PEG-EEM, total monomer, and initiator concentrations. The use of PEG-EEM as a stabilizer resulted in larger monodisperse particles relative to those obtained by the emulsifier-free emulsion copolymerization of styrene and MAA. The particle size decreased and the polymerization rate increased with the increasing MAA feed concentration. The application of power law model indicated that MAA concentration was more effective in the presence of PEG-EEM for control of particle size relative to similar systems. The latex particles with higher numbers of surface-carboxyl groups were obtained with the higher MAA feed concentrations. Although the particle size decreased and the polymerization rate increased with the increasing PEG-EEM concentration in the emulsion polymerization of styrene, both of them remained roughly constant with the increasing PEG-EEM concentration in the presence of MAA. Received: 21 December 2000 Accepted: 13 July 2000  相似文献   

13.
The next generation High Temperature Low Sag Polymer Core Composite Conductors can experience harsh in-service environments including high temperature and highly concentrated ozone. In some extreme cases, it is possible that the conductors will experience temperatures of up to 180 °C and ozone concentrations as high as 1% (10,000 ppm). Therefore, the goal of this work was to understand the degradation mechanisms in a high temperature epoxy, which could be used in the conductors at temperatures as high as 140 °C in the presence of 1% ozone. Then, the combined aging data for the epoxy were compared to the aging results from room temperature aging in 1% ozone and aging in air at 140 and 180 °C. In addition, important but limited aging testing was also performed on a set of PCCC rods to verify some of the observations from the neat resin experiments. It was determined that the mass loss, volumetric shrinkage, and flexural strength reductions of the epoxy aged at 140 °C were driven almost entirely by temperature and that the effect of 1% ozone at that temperature can be thought of as insignificant for aging times up to 90 days. The composite rods displayed postcuring at 140 °C and were also unaffected by the presence of ozone at aging time lengths of 90 days. Up to this time aging the polymer and composite specimens in atmospheric 180 °C resulted in the most drastic changes in both physical and mechanical properties, except viscoelasticity where the polymer specimens aged at 140 °C with 1% ozone showed the greatest increase in the storage modulus. The least amount of degradation to the materials was found to occur after aging at room temperature in 1% ozone.  相似文献   

14.
利用傅里叶变换红外光谱仪(FT-IR),在间歇式反应器中研究了高浓度乙醇的低温光催化氧化特性。研究结果表明,FT-IR技术能够用来研究气态有机物的光催化降解特性;在乙醇的光催化降解过程中,有乙醛等中间产物生成,乙醇先被氧化为乙醛,再被氧化为二氧化碳;在间歇式反应器中,乙醇的循环流量对乙醇的瞬时降解速率影响不大;高浓度乙醇的低温光催化氧化过程可以用单步Langmuir-Hinshelwood 方程来描述;温度对乙醇光催化氧化的初始反应速率的影响十分显著,高浓度乙醇的初始反应速率随温度的升高而迅速提高。  相似文献   

15.
Mechanical recycling is an easy and economic way to re-use plastic waste as secondary materials, but, in general, their properties are worse with respect to the reclaimed materials and the virgin polymer. The aim of this work was to study the effect of concentration and reaction kinetics of two additives, an ethylene-co-glycidyl methacrylate (Lotader) and a hydroxylamine derivative (CGX), in the re-building of a degraded polyethylene. CGX is a nitroxyl radical generator able to form branching in polyolefins while the epoxy groups of Lotader can react with the functional groups present in the recycled polyethylene. The results indicate that the CGX has a higher reaction rate than Lotader, probably due to its lower molecular weight and the different reaction path. As for the effect of concentration, as expected, a higher amount of additive accelerates and increases re-building, especially when CGX is used. The melt strength increases with the additive content and the mechanical properties show a significant reduction at the highest concentrations of both additives due to excessive cross-linking.  相似文献   

16.
Possibility of the post-synthesis functionalisation of the template-free and template-structured silica films of ca. 200 nm thickness on glass slides was evaluated. The films were prepared by dip-coating from TEOS sol–gel precursor in the absence or presence of CTAB template. It has been found out that the template-structured silica films can be functionalised with Ag nanoparticles via [Ag(NH3)2]NO3 ion-exchange or with adsorbed Methylene Blue (MB) cationic dye due to the presence of the well-organised mesopores after template removal. In contrast, only the external geometric surface of the template-free silica films appeared to be accessible for modifier molecules. Possibility of functionalisation of the multi-layered template-structured silica film depends on the sequence of dip-coating and calcination steps upon their preparation. When preparation includes reiteration of dip-coating and calcination steps, only the latest top silica film appears to be accessible to modifier molecules. When preparation includes successive dip-coating cycles accomplished by calcination of the final multi-layered film, all pores appear to be accessible since their formation occurs via simultaneous removal of the template molecules over the whole thickness of the multi-layered template-structured silica film.  相似文献   

17.
The phenomenon of internal heat generation during the plastic deformation of polyethylene/carbon black nanocomposites at high strain rates was investigated using a high resolution thermal camera. Material morphology, strain rate and carbon black (CB) content were found to be critical factors that affected heat generation during tensile testing, and consequently changed the mechanical behaviour. Two processing methods (M1 and M2) were used to prepare the materials, with CB contents of 0.5, 1 and 3 wt.%. The results showed a significant increase in internal heat generation after yielding, with temperatures exceeding 70 °C for materials processed using M1 and 55 °C for materials processed using M2. The temperature increase was dependent on the processing method, the CB content and the strain rate. The increase in temperature due to plastic heat generation affected the properties of the material, reducing the plastic hardening and reducing the tensile strength at high strain rates. This is of significance when considering the use of these materials in applications involving high strain rates, such as impact protection.  相似文献   

18.
The surface tension of a binary refrigerant mixture of R290(propane: C3H8) and R600a(isobutane:i-C4H10) has been calculated by using critical constants (Pc, Vc and Tc) and acentric factor (ω) at three isotherms of 278 K, 300 K and 320 K over the pressure range from 187.7 to 1540.2 kPa. In this paper, new formalism has been made by using simple mixing rule for modifying the predictive models: Brock–Bird, Pitzer, Hakim et al., Bolotin, Sastri–Rao and Zuo–Stenby. On comparing the computed values of surface tension with experimental data, satisfactory results have been observed. The average absolute deviation (AAD) obtained from the comparison of experimental and calculated surface tension values for six models is less than 1.9%. Finally, in a new approach, the extended Langmuir model (EL) was used to finding more information about the surface structure and surface concentration of binary refrigerant mixtures.  相似文献   

19.
牛艳华 《高分子科学》2016,34(9):1117-1128
Crosslinking reactions of high density polyethylene with low peroxide concentrations ranging from 0.1 wt% to 1.0 wt% at temperatures of 170, 180 and 190 ° C were monitored by rheological measurements. A critical gel forms at the peroxide concentration of 0.2 wt%, where the transition from long chain branching generation to crosslinking network formation could occur. Rheokinetics of crosslinking can be fitted well by Ding-Leonov's model. The curing rate k_2 at the earlier stage exhibits about 3 times acceleration per 10 °C with increasing temperature, while the equilibrium modulus G′ at the fully cured stage is almost independent of temperature. Influences of crosslinking on the subsequent crystallization behaviors were detected by DSC measurements. Above the critical gel concentration, crystallization is largely retarded as evidenced by the lower crystallization temperature Tc and crystallinity X_c due to the network formation. The secondary crystallization valley located at the temperature near 80 °C can be observed above the critical concentration, which becomes more evident with the increasing peroxide concentration and curing temperature. This phenomenon provides another evidence of crystallization retardation by the crosslinking network.  相似文献   

20.
The changes of contact angle (θ) and surface free energy (γS) under low-temperature air plasma in the polymers of different chemical structure and polarity (polyethylene, PE; polypropylene, PP; poly(ethylene terephtalate), PET and poly(methyl methacrylate), PMMA) pointed out to the greater effect of short-time plasma action (5-15 s) on these parameters as compared to longer times of exposure.The non-reversion effect of θ changes caused by plasma in PE and PP suggests that the oxidation processes mainly decide about values in nonpolar polymers. The significantly greater θ changes in PE than those in PP indicate that the side groups present in the main chains impede oxidation of such a polymer by plasma.The reversion of θ changes in PET and in PMMA, and return of these values to almost the initial ones after 10 min storage proves that the main reason for θ changes in polar polymers is a certain alteration of the chain conformation.These changes, taking place after longer plasma treatment, suggest that the side ester groups in PMMA retard the above-mentioned conformational transformations. Then, in both kinds of polymers (polar and nonpolar) the structure of macrochain decides about the efficiency of reaction caused by plasma, and at the same time the side groups retard not only the oxidation processes but the conformational changes as well.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号