首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Organoclay nanocomposites were prepared by ultrasound‐assisted solution intercalation technique based on polystyrene containing brominated epoxy and a combination of brominated epoxy and antimony oxide. Aspects of nanomorphology and nanodispersion were investigated by X‐ray diffraction and transmission electron microscopy whereas flammability and reaction to fire were evaluated using limiting oxygen index, UL‐94, and mass loss calorimeter tests. Polystyrene/brominated‐epoxy‐blend‐based nanocomposites showed mixed intercalated–exfoliated nanomorphology where polymer‐intercalated crystallites predominantly exist in polystyrene matrix and exfoliated silicate layers reside on polystyrene/brominated epoxy phase boundaries and within brominated epoxy domains. Organoclay was found to impart a compatibilization effect on polystyrene and dispersed brominated epoxy, which facilitates uniform distribution of a fine flame‐retarding phase within the matrix. With the reduction of the rate at which decomposition products evolve into the gas phase, organoclay nanocomposites showed notable reductions in peak heat release rate and increases in limiting oxygen index. The gas‐phase hot radical entrapment by halogenated flame‐retardant system was coupled with the condensed‐phase physical action of nanodispersed organoclay, which increased the overall fire‐retardant effectiveness. Fire‐retardant mechanisms of nanocomposites based on polystyrene/brominated epoxy blends were attributed to nanoconfinement and tortuous pathway effects of organoclay rather than to carbonaceous char formation proposed earlier for polystyrene/organoclay systems without conventional flame retardants. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

2.
Two preparation techniques attempting to disperse nanoclays in high-impact polystyrene matrix yielded different clay dispersion states either as intercalated or phase-separated morphologies. By this means, the influence of micro- and nanocomposite formation on the synergistic flame retardancy between nanoclays and a conventional mineral-type flame-retardant additive, namely aluminium tri-hydroxide, was investigated in terms of limiting oxygen index, horizontal burning rates and cone calorimetric fire properties. Reductions in peak heat release rates in the cone calorimeter were doubled with nanocomposites relative to microcomposites, attributed to char enhancement and lower mass loss rates. This was accompanied by higher limiting oxygen index, lower burning rates and better mechanical properties. In particular, the formation of nanocomposites allowed for the recovery of tensile strength reductions caused by high loadings of aluminium tri-hydroxide in the polymer.  相似文献   

3.
Graphene oxide was prepared by ultrasonication of completely oxidized graphite and used to improve the flame retardancy of epoxy.The epoxy/graphene oxide nanocomposite was studied in terms of exfoliation/dispersion,thermal stability and flame retardancy.X-ray diffraction and transmission electron microscopy confirmed the exfoliation of the graphene oxide nanosheets in epoxy matrix.Cone calorimeter measurements showed that the time to ignition of the epoxy/graphene oxide nanocomposite was longer than that of neat epoxy.The heat release rate curve of the nanocomposite was broadened compared to that of neat epoxy and the peak heat release rate decreased as well.  相似文献   

4.
Polypropylene (PP) is melt-compounded in a twin-screw extruder with surface-modified decabromodiphenyl ethane/antimony trioxide (DBDPE/Sb2O3) and organically modified montmorillonite (OMMT). The intercalation and dispersion microstructure of OMMT in the nanocomposites are investigated by X-ray diffraction, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Thermal stability and char residue are characterized by thermogravimetric and differential thermal analysis (TGA–DTA). Flame retardant properties are evaluated by limited oxygen index (LOI) and UL-94 vertical burning test.The results indicate that better flame retardancy can be achieved for the composite containing a modified mixture DBDPE/Sb2O3. The presence of DBDPE/Sb2O3 could improve the dispersion of OMMT in polypropylene, leading to higher thermal stability and more char residue. A synergistic effect between OMMT and DBDPE/Sb2O3 has been observed and discussed.  相似文献   

5.
Polypropylene (PP)/sepiolite/zinc borate (BZn) composites were prepared by melt extrusion after pre‐modification of sepiolite with cetyltrimethylammonium bromide. The synergistic effects of organo‐sepiolite (OSEP) and BZn on the fire retardancy of PP were studied. X‐ray diffraction and transmission electron microscopy were used to characterize the morphology of the composite. Thermogravimetric analysis, cone calorimetric analysis, limiting oxygen index, and the UL‐94 protocol (Demaisheng technology Co. Ltd.,Shenzhen,China) were used to assess the thermal stability and fire retardancy of the composites. The fire retardancy of PP was greatly improved by introducing OSEP and BZn. The reduction in peak heat release rate for PP/BZn composites at 10% BZn loading is 62% compared with pristine PP, but increased to 78% for PP/10%BZn/10%OSEP composite. Other fire retardant parameters were also improved. The fire performance index of PP/10%BZn/10%OSEP composite was 0.045 sm2/kW compared with 0.014 sm2/kW of pristine PP. The average mass loss rate was 12.1 g/sec/m2 for the composite with both additives compared with 30.1 g/sec/m2 for pristine PP; the smoke production rate decreased by 37% from 0.117 m2/s of pristine PP to 0.074 m2/s of PP/OSEP/BZn. The char residue of composite increased from 0.6% in pristine PP to 12.19% in the composite. The limiting oxygen index increased from 17.1 in pristine PP to 20.8 in the composite: all the samples could obtain a UL‐94 horizontal burn rating. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

6.
In this paper, GO-BN(graphene oxide grafted boron nitride) was synthesized from graphene oxide and boron nitride by silane coupling agent KH550. Furthermore, GO-BN and intumescent flame retardant (IFR) were added into natural rubber (NR) simultaneously to improve its flame retardancy. The structure of GO-BN was studied by Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS). The analysis showed that GO-BN was successfully synthesized. The enhanced flame retardancy performance of flame retardant natural rubber (FRNR) was evaluated by limiting oxygen index (LOI) and UL-94 tests. Moreover, the combustion action of FRNR in fire was evaluated by cone calorimetry. Notably, the results showed that the sample with a GO-BN content of 12 phr showed the best flame retardancy performance. The heat release rate (HRR) and total heat release rate (THR) were remarkably decreased by 42.8% and 19.4%, respectively. Carbon residues were analyzed by infrared spectroscopy and scanning electron microscopy, which showed that GO-BN and IFR had a synergistic catalytic effect. The formation of compact thermal stable carbon layer after combustion was the key to protect engineering materials from combustion.  相似文献   

7.
Hexakis(4-hydroxyphenoxy)-cyclotriphosphazene (PN-OH) was synthesized through nucleophilic substitution of the chloride atoms of hexachlorocyclotriphosphazene and reduction of the aldehyde groups, and its chemical structure was characterized by elemental analysis, 1H and 31P NMR, and Fourier transform infrared (FTIR) spectroscopy. A new phosphazene-based epoxy resin (PN-EP) was successfully synthesized through the reaction between diglycidyl ether of bisphenol-A (DGEBA) and PN-OH, and its chemical structure was confirmed by FTIR and gel permeation chromatography. Four PN-EP thermosets were obtained by curing with 4,4′-diaminodiphenylmethane (DDM), dicyandiamide (DICY), novolak and pyromellitic dianhydride (PMDA). The reactivity of PN-EP with the four curing agents presents an increase in the order of DDM, PMDA, novolak and DICY. An investigation on their thermal properties shows that the PN-EP thermosets achieve higher glass-transition and decomposition temperatures in comparison with the corresponding DGEBA ones while their char yields increase significantly. The PN-EP thermosets also exhibit excellent flame retardancy. The thermosets with novolak, DICY and PMDA achieve the LOI values above 30 and flammability rating of UL94 V-0, whereas the one with DDM reaches the V-1 rating. The nonflammable halogen-free epoxy resin synthesized in this study has potential applications in electric and electronic fields in consideration of the environment and human health.  相似文献   

8.
A new type of bismaleimide resin (EPBMI), containing epoxy unit and phosphorus in the main chain, was synthesized. The structure of the new resin was confirmed by infrared spectroscopy (IR), 1H NMR and 13C NMR spectroscopies. In addition, the compositions of the new synthesized bismaleimide with two reactants, 4,4′-diaminodiphenylsulfone (DDS) and 4,4′-diaminodiphenylether (DDE), was used to compare its reactivity and thermal properties with conventional bismaleimide (EBMI). Reactivity was measured by differential scanning calorimetry. Thermogravimetric analysis revealed that the polymers, obtained through the reactions between bismaleimides and diamine agents, also demonstrated excellent thermal properties and high char yield.  相似文献   

9.
The curing behavior of diglycidyl ether of bisphenol-A(DGEBA) with different phosphorus containing diamidediimide-tetraamines(DADITAs) was studied by DSC. Eight DADITAs of varying structures were synthesized by reacting 1 mole of pyromellitic anhydride(PMDA)/3,3′-benzophenone tetracarboxylic dianhydride(BTDA)/1,4,5,8-naphthalene tetracarboxylic dianhydride(NTDA)/4,4′-oxydiphthalic anhydride(ODPA) with 2 mole of L-tryptophan(T) in a mixture of acetic acid and pyridine(3:2 V/V) followed by activaton with thionyl chloride and then condensation with excess of phosphorus containing triamines tris(3-aminophenyl) phosphine(TAP) and tris(3-aminophenyl) phosphine oxide(TAPO). DADITAs obtained by reacting PMDA/BTDA/NTDA/ODPA with L-tryptophan followed by condensation with TAP/TAPO were designated as PTAP, PTAPO, BTAP, BTAPO, NTAP, NTAPO, OTAP and OTAPO respectively. The structural characterization of synthesized DADITAs was done by FTIR,1H-NMR,13C-NMR,31P-NMR spectroscopic techniques and elemental analysis. Thermal stability of the isothermally cured epoxy was investigated using dynamic thermogravimetry analysis. The glass transition temperature(Tg) was highest in DGEBA cured using PTAP. All epoxy thermosets exhibited excellent flame retardancy, moderate changes in Tg and thermal stability. Due to presence of phosphorus in curing agents, all epoxy resin systems met the UL-94 V-0 classification and the limiting oxygen index(LOI) reached up to 38.5, probably because of the nitrogen-phosphorus synergistic effect.  相似文献   

10.
A triazine ring‐containing charring agent (PEPATA) was synthesized via the reaction between 2,6,7‐trioxa‐l‐phosphabicyclo‐[2.2.2]octane‐4‐methanol (PEPA) and cyanuric chloride. It was applied into intumescent flame retardant epoxy resins (IFR‐EP) as a charring agent. The effect of PEPATA on fire retardancy and thermal degradation behavior of IFR‐EP system was investigated by limited oxygen index (LOI), UL‐94 test, microscale combustion calorimetry (MCC), thermogravimetric analysis (TGA) and thermogravimetric analysis/infrared spectrometry (TG‐IR). The glass transition temperatures (Tg) of IFR‐EP systems were studied by dynamic mechanical analysis (DMA). The LOI values increased from 21.5 for neat epoxy resins (EPs) to 34.0 for IFR‐EP, demonstrating improved flame retardancy. The TGA curves showed that the amount of residue of IFR‐EP system was largely increased compared to that of neat EP at 700 °C. The new IFR‐EP system could apparently reduce the amount of decomposing products at higher temperatures and promotes the formation of carbonaceous charred layers that slowed down the degradation. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

11.
Highly soluble 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide-(DOPO)-based diamino hardener (2), bearing its amino groups directly on the DOPO framework, is investigated with respect to its use as a reactive flame retardant in thermosets. A mechanism for decomposition of the corresponding phosphorus-modified epoxy resin system based on a diglycidylether of bisphenol A DGEBA and 2 (DGEBA/2) is proposed and compared to the systems using DGEBA and 4,4′-diaminodiphenylsulfon (DGEBA/DDS) and to a similar system based on the structurally comparable non-reactive DOPO-based compound (DGEBA/DDS/1). Additive 1 changed the decomposition characteristics of the epoxy resin only slightly and phosphorus was released. Incorporating 2 induces two-step decomposition and most of the phosphorus remains in the residue. Furthermore, the fire behaviour of neat epoxy resin systems and a representative carbon fibre-reinforced composite based on DGEBA, DDS and 2 (DGEBA/DDS/2) were examined and compared to that of the analogous composite systems based on DGEBA/DDS and DGEBA/DDS/1. Based on different flame retardancy mechanisms both the reactive compound 2 and the additive compound 1 improve flammability (increase in LOI >13% and achieving V-1 behaviour) of the epoxy resin and composites. Under forced flaming only the flame inhibition of the additive compound 1 acts sufficiently. Lastly, the superior key mechanical properties of the epoxy resin and composite based on 2 are sketched.  相似文献   

12.
A novel flame retardant containing silicon and caged bicyclic phosphate groups, tri(2,6,7-trioxa-1-phosphabicyclo[2.2.2]octane-1-oxo-4-hydroxymethyl) phenylsilane (TPPSi) was successfully synthesized. The chemical structure of TPPSi was characterized by FTIR, 1H NMR and 31P NMR. The application of TPPSi (25 wt%) as a flame retardant in polyamide 6 (PA6) not only gains satisfied flame retardancy and smoke suppression, but also retains the high toughness and inherent appearance of pure PA6. The influence of TPPSi on the decomposition pathway of PA6 was discussed based on TG-FTIR and FTIR analysis. The interaction between TPPSi and PA6 at high temperature alters the decomposition pathway of PA6 resulting in the formation of the residue containing phosphorus and silicon. The heat and smoke release behaviors at different external heat fluxes were measured by cone calorimeter, and the fire residue was analyzed by SEM-EDX. The condensed phase action resulting from the barrier effect of residue is proposed to be the major flame retardancy mechanism of TPPSi in PA6, with the fuel reduction action as the minor.  相似文献   

13.
The fire retardancy mechanisms of aluminium diethylphosphinate in combination with melamine polyphosphate and zinc borate was analysed in glass-fibre reinforced polyamide 6,6. The influence of phosphorus compounds on the polyamide decomposition pathways was characterized using thermal analysis (TG), evolved gas analysis (TG-FTIR), and FTIR-ATR analysis of the residue. The Lewis acid-base interactions between the flame retardants, the amide unit, and the metal ions control the decomposition. The flammability (LOI, UL 94) and performance under forced-flaming conditions (cone calorimeter using different irradiations) were investigated. Fire residues were analysed with FTIR-ATR, SEM-EDX, and NMR. Aluminium phosphinate in polyamide 6,6 acts mainly by flame inhibition. Melamine polyphosphate shows some fuel dilution and a significant barrier effect. Using a combination of aluminium phosphinate and melamine polyphosphate results in some charring and a dominant barrier effect. These effects are improved in the presence of zinc borate due to the formation of boron-aluminium phosphates instead of aluminium phosphates.  相似文献   

14.
The pyrolysis and fire behaviour of epoxy resin (EP) composites based on a novel polyhedral oligomeric silsesquioxane containing 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO-POSS) and diglycidyl ether of bisphenol A (DGEBA) have been investigated. The pre-reaction between the hydroxyl groups of DOPO-POSS and the epoxy groups of DGEBA at 140 °C is confirmed by FTIR, which means that DOPO-POSS molecules of hydroxyl group could easily disperse into the epoxy resin at the molecular level. The EP composites with the DOPO-POSS were prepared through a curing agent, m-phenylenediamine (m-PDA). The morphologies of the EP composites observed by SEM indicate that DOPO-POSS disperses with nano-scale particles in the EP networks, which implies good compatibility between them. The thermal properties and pyrolysis of the EP composites were analyzed by DSC and TGA, TGA-FTIR, and TGA-MS. The analysis indicates that the DOPO-POSS change the decomposition pathways of the epoxy resin and increase its residue at high temperature; moreover, the release of phosphorous products in the gas phase and the existence of Si-O and P-O structures in the residue Is noted. The fire behaviour of the EP composites was evaluated by cone calorimeter (CONE). The CONE tests show that incorporation of DOPO-POSS into epoxy resin can significantly improve the flame retardancy of EP composites. SEM and XPS were used to explore micro-structures and chemical components of the char from CONE tests of the EP composites, they support the view that DOPO-POSS makes the char strong with the involvement of Si-O and P-O structures.  相似文献   

15.
New flame retardant system for poly(oxymethylene) (POM) has been studied. The combination of red phosphorus with novolac and melamine was found to act as an effective flame retardant of POM. The base POM exhibited very low limiting oxygen index (LOI) value of 15.3, while the flame retarded POM gave remarkably high LOI value of 37.5 and UL94 V-1 ranking without dripping at 0.8 mm thickness. The results of cone calorimetry, thermogravimetry and FTIR analysis suggested that the flame retarding mechanism is the intumescent char formation in the condensed phase. Novolac having a phenolic hydroxyl group is miscible with POM, and in the flaming process, red phosphorus yields phosphine and its acidic product such as phosphoric acid due to hydrolysis and oxidation reactions. In addition, all of novolac, melamine and phosphine are able to readily react with formaldehyde generated from POM during burning to give the reinforced and cross-linked char network through the polyaddition and polycondensation reactions. Therefore, the red phosphorus/novolac/melamine ternary combination system could synergistically promote the high flame retardancy of POM without the flaming drips.  相似文献   

16.
Phosphorus/nitrogen‐containing advanced epoxy resins were obtained by chain‐extension of the diglycidyl ether of bisphenol‐A epoxy (DGEBA) resin with phosphorus‐modified triglycidyl isocyanurate (TGICP). The structure of TGICP was characterized by Fourier transform infrared spectroscopy (FTIR) and nuclear magnetic resonance (NMR). Differential scanning calorimetry revealed that the EP/TGICP composites possessed higher glass transition temperatures than that of phosphorus free EP. The thermal stability and flame retardant properties of the epoxy resin/TGICP systems were investigated by thermogravimetric analysis (TGA), limiting oxygen index (LOI), and vertical burning test (UL‐94) test. When the TGICP content was 10 wt%, the LOI value of epoxy resin system was as high as 35.0% and it can obtain the V‐0 grade in UL‐94 protocol. From microscale combustion calorimetry (MCC) measurement, it was found that the addition of TGICP reduced the value of peak heat release rate and total heat release. The thermal degradation process of EP and EP/TGICP composite was monitored by real time FTIR. Moreover, scanning electron microscopy (SEM) and X‐ray photoelectron spectroscopy (XPS) were used to explore the morphology and chemical components of the char residues. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

17.
Brominated flame retardant polystyrene composites were prepared by melt blending polystyrene, decabromodiphenyl oxide, antimony oxide, multi-wall carbon nanotubes and montmorillonite clay. Synergy between carbon nanotubes and clay and the brominated fire retardant was studied by thermogravimetric analysis, microscale combustion calorimetry and cone calorimetry. Nanotubes are more efficient than clay in improving the flame retardancy of the materials and promoting carbonization in the polystyrene matrix. Comparison of the results from the microscale combustion calorimeter and the cone calorimeter indicate that the rate of change of the peak heat release rate reduction in the microscale combustion calorimeter was slower than that in the cone. Both heat release capacity and reduction in the peak heat release rate in the microscale combustion calorimeter are important for screening the flame retardant materials; they show good correlations with the cone parameters, peak heat release rate and total heat released.  相似文献   

18.
The ferrocene‐based polymer (PDPFDE) accompanied with traditional intumescent flame retardant (IFR) system (ammonium polyphosphate (APP)/pentaerythritol (PER) = 3/1, mass ratio) has been used as additive flame retardant in polypropylene (PP), aiming to lower the total loading amount. The thermal stability and fire retardant properties were investigated by thermogravimetric analysis (TGA), limiting oxygen index (LOI), vertical combustion (UL‐94), and cone calorimetry (CONE). The fire retardant mechanism was studied by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and Raman spectroscopy. The results showed that the PP1 with 25 wt% IFR only passed the UL‐94 V‐1 rating, but the PP6 loaded by 0.5 wt% PDPFDE and 22.5 wt% IFR possessed an LOI value of 28.5% and passed the UL‐94 V‐0 rating; the peak heat release rate (pHRR) and total heat release (THR) are decreased by 63% and 43%, respectively, compared with pure PP. In addition, the char residue of PP6 manifested a very compact and smooth surface, indicating a more effective barrier layer. Meanwhile, it was interesting that the addition of PDPFDE evidently improved the impact strength and elongation at break of PP/IFR composites.  相似文献   

19.
周光大 《高分子科学》2015,33(12):1683-1690
The effects of magnesium oxide(Mg O) on the flame retardant performance of intumescent systems based on ammonium polyphosphate(APP) and pentaerythritol(PER) in ethylene vinyl acetate copolymer(EVA) were studied. The results showed that Mg O affects both the quality and quantity of residual char. There is an optimal value for the loading amount of Mg O. More or less Mg O loading may cause the formation of defective char layers and worsen the flame retardancy of EVA. According to the results of limiting oxygen index(LOI), vertical flammability test(UL94 rating) and cone calorimetry(CONE), the best flame retardancy with a strong and well intumescent char is obtained from the sample with 1 wt% of Mg O, which has the highest LOI value of 27.9, UL94 rating of V-0 and the lowest peak heat release rate of 242 k W·m?2.  相似文献   

20.
A new type of epoxy resin which contained cyclic phosphine oxide group in the main chain was synthesized. The structure of the new type of epoxy resin was confirmed by elemental analyses (EA), infrared spectroscopy (IR), and 1H-NMR and 13C-NMR spectroscopies. In addition, compositions of the new synthesized cyclic phosphine oxide epoxy resin (EPCAO) with three curing agents, e.g., bis(3-aminophenyl)methylphosphine oxide (BAMP), 4,4′-diamino-diphenylmethane (DDM), and 4,4′-diaminodiphenylsulfone (DDS), were used for making a comparison of its curing reactivity, heat, and flame retardancy with that of Epon828 and DEN438. The reactivities were measured by differential scanning calorimetry (DSC). Through the evaluation of thermal gravimetric analysis (TGA), those polymers which were obtained through the curing reactions between the new epoxy resin and three curing agents (BAMP, DDM, DDS) also demonstrated excellent thermal properties as well as a high char yield. © 1996 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号