首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Electron spin resonance imaging (ESRI) was applied to the study of thermal degradation at 393 K of poly(acrylonitrile-butadiene-styrene) (ABS) prepared by emulsion polymerization and containing 25% wt butadiene (ABS-25B). The polymer was doped with 1 or 2% wt Tinuvin 770 as the hindered amine stabilizer (HAS). The spatial distribution of the HAS-derived nitroxide radicals, obtained by 1D ESRI, was initially homogeneous, but became heterogeneous through sample depth with increasing treatment time, t. The spatial variation of ESR line shaping with sample depth was visualized by 2D spectral-spatial ESRI. ESR spectra along the sample depth, obtained by nondestructive (“virtual”) slicing of the 2D images, were used to deduce the relative intensity of nitroxide radicals present in two dynamically distinct sites; the sites were assigned to butadiene-rich (fast component) and SAN-rich domains (slow component), respectively. 1D and 2D ESRI allowed the determination of the extent of degradation within morphologically-distinct domains as a function of sample depth and treatment time. The results from the ESRI experiments were substantiated by attenuated total reflectance (ATR)-FTIR spectroscopy of the outer layer (500 μm thick) of the polymer. Both techniques indicated faster degradation of polymer samples that contained the higher HAS content, 2% wt. Comparison with the results obtained for a parallel study of ABS prepared by mass polymerization and containing 10% wt butadiene (ABS-10B) indicated clearly that the rate of degradation of the polymer prepared by emulsion polymerization (ABS-25B) is significantly reduced. This result can be explained by the formation of cross-linked “composite” networks during emulsion polymerization, which leads to greater thermal stability.  相似文献   

2.
The thermal and photo-oxidative stabilisation of high styrene-butadiene copolymer (SBC) with high styrene content (K-Resin) has been studied using a variety of analytical and spectroscopic methods including yellowness, luminescence and FT-IR spectroscopy coupled with hydroperoxide analysis in order to understand the nature and effectiveness of the processes involved. The next stage of the program was to evaluate the effects of various chemical/solvent treatments on the role of metal ions/residual catalysts and hydroperoxides in the thermal and photostabilisation of SBS as well as combinations of phenolic antioxidants and phosphites/phosphonites. Other additives, such as HALS and a metal deactivator, were also added to the combinations of phenolic and phosphite antioxidants in order to study their behaviour and efficiency. The chemical treatments appeared to stabilise SBS against thermal oxidation to a greater or lesser extent. Phosphoric acid treatment via reflux and zinc dithiocarbamate treatments showed better performances than the rest of the treatments, the latter was particularly effective at inhibiting the discolouration. During photo-oxidation, on the other hand, chemical treatments involving phosphoric acid and pre-thermal effects showed the importance of catalyst effects. The addition of phenolic antioxidants, phosphites/phosphonites, metal deactivator and HALS was found to stabilise the SBS against thermal and photo-oxidation. In thermal oxidation, the combination of Irganox® 1010/Irgafos® 168 was found to effectively stabilise the polymer when the finalisation of the polymerisation was with adipic acid. When the same antioxidants were used, but with polymer finalised with BHT, strong yellowing was observed and a higher amount of hydroperoxides and oxidation products. Increasing the amount of antioxidants did not increase the stabilisation efficiency. The stabilisation efficiency of Irganox® 1010 combined with Alkanox® P-24 was found to be more effective than when it was combined with Irgafos® 168. The formulations containing Irgafos® 168/Irganox® 1010 and Irgafos® 168/Irganos® 1330 were more effective in colour protection and retarding the formation of oxidation products than the combinations of Irgafos® 168/Irganox® 3114 and Irgafos® 168/Lowinox® 1790. The effect of the addition of HALS, such as Tinuvin® 770, Tinuvin® 622 and Chimassorb® 944, and a metal deactivator, such as Irganox® MD 1024, to the combination of Irgafos® 168/Irganox® 1010 was found to be antagonistic. In photo-oxidation, a combination of Irganox® 1010/Irgafos® 168 protected the polymer efficiently, when the polymerisation of the polymer was finalised with adipic acid. When the polymerisation was finalised with BHT, a higher amount of hydroperoxides and oxidation products was found. An increase in the amount of antioxidants did not enhance the stability of the polymer. The addition of Alkanox® P-24 exhibited an opposite effect to that seen in thermal oxidation, as the stabilisation efficiency was less effective than with Irgafos® 168. The formulation containing Irgafos® 168/Irganox® 1010 was found to be the most efficient compared with the other phenolic antioxidants. The addition of Tinuvin® 770 to the formulation Irgafos® 168/Irganox® 1010 was found to have a synergistic effect. The addition of polymeric HALS or Irganox® MD 1024, a metal deactivator, had an antagonistic effect on the stabilisation of the polymer. Disruption of the excimer sites in the styrenic phase also correlated with stabilisation effects.  相似文献   

3.
Spatial resolution of photo and thermooxidation processes in polypropylene (PP) and polystyrene (PS) plaques was studied by electron spin resonance imaging (ESRI) and attenuated total reflectance Fourier-transform infrared spectroscopy (ATR FTIR). Polymer plaques made of PP and PS stabilized with various systems based on hindered amine stabilizers (HAS) were exposed to accelerated photodegradation and to heat aging in air atmosphere. Concentration profiles of nitroxides generated during the degradation process in the plaques were measured by ESRI, carbonyl and hydroxy groups were identified by ATR FTIR, transparency of the plaques in the actinic part of solar radiation, including a part of UV-B (295-315 nm), full range of UV-A (315-400 nm) and visible radiation was measured by optical techniques. A mechanism of the degradation consistent with all experimental data is suggested.  相似文献   

4.
Highly crosslinked aliphatic and aromatic polyurethane-acrylate (PUA) coatings have been obtained by photopolymerization of multifunctional monomers. The discoloration and chemical modifications occurring upon accelerated QUV aging were monitored by UV and IR spectroscopy. The polymers were found to undergo photooxidation and loss of carbamate and phenyl groups, with lower quantum yields (10?3 mol photon?1) than in related linear polymers. Hydroxy-phenyl benzotriazole UV-absorbers have a limited effect on the degradation rate, at the concentration used (0.5%). Hindered amines (HALS) are substantially more effective, especially in aliphatic PUA. A 20-fold increase in the stabilization efficiency was found with the UVA + HALS combination. Aromatic PUA are more difficult to stabilize, because of the strong absorption and photolysis of the phenyl group which yields colored products. Radical-induced oxidation is predominant in aliphatic PUA and develops with long kinetic chains, while in aromatic PUA it competes with direct photolysis.  相似文献   

5.
A poly phenylene vinylene (PPV‐type) oligomer used in organic photovoltaics was designed to facilitate the interpretation of mass spectral data. A film of the oligomer was subjected to various degrees of illumination (1000 W m?2, AM1.5) in air resulting in photooxidation of the material. The surface chemistry was monitored by TOF‐SIMS and XPS. The experiment described accelerated photooxidation without any contributions from interface processes. The photooxidative degradation mechanisms are described starting from the intact molecule through presumably, intermediate photooxidation products to small photooxidation products. The processes are described with various degrees of specificity and with varying degrees of detail. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

6.
Molecularly imprinted polymer (MIP) has been synthesized by precipitation polymerization using ciprofloxacin (CIP) as template for the analysis of fluoroquinolone antibiotics (FQs). This MIP material was packed as sorbent in a device for microextraction by packed sorbent (MEPS) combined with liquid chromatography–tandem mass spectrometry (LC–MS/MS) for the analysis of selected FQs drugs including CIP, norfloxacin (NOR) and ofloxacin (OFLO) in municipal wastewater samples. In comparison to the new MIP-MEPS procedure, the target compounds were also determined by solid-phase extraction (MISPE) using the new molecular imprinted polymer material to validate the new MIP-MEPS method. The ability of the MIP for molecular recognition of CIP, NOR and OFLO was proved in presence of structurally different environmental relevant substances such as quinolones (Qs), flumequine (FLU), di(methyl)phthalate (DMP), technical 4-nonylphenol (NP), caffeine, Galaxolide®, Tonalid®, di(butyl)phthalate (DBP), Triclosan, bisphenol-A (BPA), carbamazepine, di(ethylhexyl)phthalate (DEHP), estradiol and octocrylene. The analysis of wastewater samples revealed the high selectivity of the synthesized polymer which was able to recognize and retain the target analytes by both extraction methods, the offline SPE with MIP material and the semi-automated MEPS packed with MIP material.  相似文献   

7.
The intermolecular interactions and miscibility behavior between poly(ether imide) (Ultem®1000) and a copolyester of bisphenol-A with a mixture of terephthalic and isophthalic acid (Ardel®D-100) in compositions of 100/0, 80/20, 60/40, 40/60, 20/80 and 0/100 have been investigated in dilute solutions in chloroform. An Ubbelohde-type home-made viscometer was used to determine the specific viscosities of the blends in a constant temperature bath. Several viscosity interaction parameters used as the criteria of miscibility were determined from viscosity measurements. The parameters suggested that Ultem®1000 and Ardel®D-100 were miscible. The miscibility of the polymers was confirmed by the results of differential scanning calorimetry measurements.  相似文献   

8.
The influence of matrix extensibility on the properties of a composite was studied using two glassy polymers of almost identical chemical structure but differing crosslink densities. The lower crosslink density gave a 73 % increase in tensile elongation at break and a 56% increase in specific fracture energy. Unidirectional laminates of glass, carbon, and Kevlar® fibres were prepared with these two polymers and tested for shear strength, transverse tension, and dynamic fatigue.The shear strengths of the polymers were found to be almost independent of crosslink densities (about 100 MPa). The interlaminar shear strengths of the carbon fibre laminates corresponded to those of the matrix polymers (Kevlar® fibre laminates failed at 60 %). In accordance with Griffith's equation the more extensible polymer and its laminates performed better in tensile tests transverse to the fibres due to improved fracture energy. Failure criteria based on strain magnification were useful in the case of glass fibre laminates, but proved inadequate for laminates based on anisotropic fibres such as carbon and Kevlar®.The dynamic fatigue strengths of the two matrix polymers were unaffected by the difference in crosslink densities. Almost the same fatigue strengths were obtained for the matrix polymers as for the laminates (carbon, glass) transverse to the fibres. A lack of processability of the polymer with high functionality was identified as a source of deteriorating effects.  相似文献   

9.
Aerobic and anaerobic biodegradation of four different kinds of polymers, polylactic acid, polycaprolactone, a starch/polycaprolactone blend (Mater-bi®) and poly(butadiene adipate-co-terephthalate) (Eastar bio®) has been studied in the solid state under aerobic conditions and in the liquid phase under both aerobic and anaerobic conditions.Several standard test methods (ISO 14851, ISO 14853, ASTM G 21-90 and ASTM G 22-76 and NF X 41-514) were used to determine the biodegradability. To determine the efficiency of the biodegradation of polymers, quantitative (mass variations, oxygen uptake, pressure variations, biogas generation and composition, biodegradation percentages) and qualitative (variation of Tg and Tf, variation of molar mass by SEC, characterization by FTIR and NMR spectroscopy) analyses were made and materials were characterized before and after 28 days of degradation.After 28 days, the degradation of materials depends on the material and on the test conditions used. The degradation is better under aerobic conditions, in particular for Mater-bi and polycaprolactone. Nevertheless, we can notice that it is the amorphous part of the polymer which is more attacked by the micro-organisms but, after 28 days, they do not seem to cleave macromolecules inside the material: bacteria attack the surface of the polymer and seem to consume the macromolecules one after another (there is no significant variation in the molar mass and no difference between FTIR and NMR spectra before degradation and after 28 days of degradation).  相似文献   

10.
Novel crosslinked sulfonated poly(ether sulfone)s (PESs) were prepared by thermal irradiation of the allyl-terminated telechelic sulfone polymers using a bisazide. The sulfonated polymers in different comonomer compositions were fully characterized by 1H NMR, and the crosslinked structure was also verified by FT-IR spectroscopic analyses. Having both the uniform distribution of the hydrophilic conductive sites and controlled hydrophobic nature by minimized crosslinking over the rigid rod poly(ether sulfone) backbone, the crosslinked polymer membrane (PES-60) offered excellent proton conductivity of 0.79 S cm−1 at 100 °C together with hydrolytic and oxidative stability. In addition, only 17% of methanol permeability of the Nafion® was observed for the crosslinked PES-60.  相似文献   

11.
Mass spectrometry (MS) is the most versatile and comprehensive method in “OMICS” sciences (i.e. in proteomics, genomics, metabolomics and lipidomics). The applications of MS and tandem MS (MS/MS or MSn) provide sequence information of the full complement of biological samples in order to understand the importance of the sequences on their precise and specific functions. Nowadays, the control of polymer sequences and their accurate characterization is one of the significant challenges of current polymer science. Therefore, a similar approach can be very beneficial for characterizing and understanding the complex structures of synthetic macromolecules. MS-based strategies allow a relatively precise examination of polymeric structures (e.g. their molar mass distributions, monomer units, side chain substituents, end-group functionalities, and copolymer compositions). Moreover, tandem MS offer accurate structural information from intricate macromolecular structures; however, it produces vast amount of data to interpret. In “OMICS” sciences, the software application to interpret the obtained data has developed satisfyingly (e.g. in proteomics), because it is not possible to handle the amount of data acquired via (tandem) MS studies on the biological samples manually. It can be expected that special software tools will improve the interpretation of (tandem) MS output from the investigations of synthetic polymers as well. Eventually, the MS/MS field will also open up for polymer scientists who are not MS-specialists. In this review, we dissect the overall framework of the MS and MS/MS analysis of synthetic polymers into its key components. We discuss the fundamentals of polymer analyses as well as recent advances in the areas of tandem mass spectrometry, software developments, and the overall future perspectives on the way to polymer sequencing, one of the last Holy Grail in polymer science.  相似文献   

12.
The depletion behavior of two types of hindered phenolic antioxidants (AO), Irganox® 1010 (I-1010) and Irganox®1076 (I-1076), in medium density polyethylene (MDPE)/nanoclay composite was evaluated by incubating samples in a forced air oven at 85 °C. The presence of 4 wt% nanoclay accelerated the depletion of both types of AO, particularly at the surface region of the sample. However, the depletion mechanism in the interior of sample was governed by the AO molecular structure. For samples containing the bulky Irganox®1010, OIT decreased exponentially with aging time consistent with a first order reaction. In contrast, an increase of OIT was detected in first 60 days of heat aging for sample containing I-1076 and afterward the OIT decreased slowly with aging time. The hypothesis for the initial increase of OIT is that the relatively small and linear structure of I-1076 may enable it to be trapped inside the nanoclay galleries and then subsequently released into the polymer matrix during heat aging.  相似文献   

13.
The mechanisms of photooxidation of the popular commercial polymers polystyrene (PS), polyethylene (PE), and an ethylene-carbon monoxide copolymer (polyketone, PK) differing in the polymer chain structure and the nature and concentration of chromophore groups are considered. In the case of the formation of photosensitive intermediates in polystyrene, taken as an example, the photochain oxidation mechanism was revealed and thoroughly studied, according to which the polymer “burns” into complete oxidation products (CO2, H2O) with a degree of conversion of ≥50% and a kinetic-chain length of l = 103–104 units. The hydroperoxide mechanism plays a minor role in the photooxidation of PS, it is a short-chain process (as in the case of thermal oxidation, l ∼ 10) and does not exceed 1.5% of the total amount of absorbed oxygen. Carbonyl groups, as weak photoinitiators, induce in PE and PK the conventional radical chain mechanism of photooxidation with degenerate branching of kinetic chains on hydroperoxide groups and other oxidations products.  相似文献   

14.
Surface modification of high-density-polyethylene (HDPE), polypropylene (PP), and poly(ethylene terephthalate) (PET) films was promoted by potassium permanganate solutions in HCl acidic medium using eight conditions by varying time, temperature, and oxidative solution concentration. This oxidation system introduced different amounts of carbonyl-carboxyl and hydroxyl groups onto the polymer surfaces. Drop water contact angle, FTIR, TGA, and SEM were used to assess oxidation efficiency and the surface changes suffered by the polymer film. The hydrophilicity of films obtained by contact angle was analyzed using a 23 factorial design in Design-Expert® program to obtain the main effects, the variance, and the interaction between the effects in action in the oxidation process.  相似文献   

15.
The rates of accumulation of oxygen-containing species in photooxidation have been determined for a series of polymers such as polystyrene, polyisoprene, and polybutadiene in a wide range of singlet oxygen stationary concentrations in the polymers. An increase in singlet oxygen (1O2) concentration was achieved by introducing a dye which is a 1O2 donor into a polymer and by irradiating a sample with an additional source of light absorbed by the dye only. To decrease 1O2 concentration, 1,2,5-trimethyl-4-hydroxyphenylpiperidine, which is a quencher of 1O2, was introduced into a sample. The 1O2 stationary concentration in an oxidized polymer was measured via singlet oxygen oxidation of 2,2,6,6-tetramethyl-4-oxypiperidine which leads to the formation of the corresponding nitroxyl radical. The photooxidation rate has been found to vary only slightly with 1O2 concentration, even when the concentration changes 10–25-fold. Thus, 1O2 does not participate appreciably in the process of polymer photooxidation. It may be due to the lowering of 1O2 reactivity toward unsaturated groups in the polymer matrix as compared with that in solution.  相似文献   

16.
Biodegradable and thermosensitive poly(organophosphazenes) with various substituents were synthesized and their hydrolytic degradation properties were investigated in vitro and in vivo. The aqueous solutions of all polymers showed a sol-gel phase transition behavior depending on temperature changes. The side groups of polymers significantly affected the polymer degradation and accelerated hydrolysis of polymers in the order of carboxylic acid > depsipeptide > without carboxylic acid and depsipeptide. The increased gel strength led to the decreased hydrolysis rate. The polymer hydrogels with 750 Da of α-amino-ω-methoxy poly(ethylene glycol) were rapidly decreased by dissolution. The polymer degradation was also influenced by pH and temperature. The in vivo behaviors of mass decrease of the polymer hydrogels were similar with the in vitro results. These results suggest that the biodegradable and thermosensitive poly(organophosphazenes) hold great potentials as an injectable and biodegradable hydrogel for biomedical applications with controllable degradation rate.  相似文献   

17.
The monomers bis(2-thienyl)-9,9-didecylfluorene, BTDF, and bis(3,4-(ethylenedioxy)thien-2-yl)-9,9-didecylfluorene, BEDOT-DF, have been synthesized and electropolymerized to the corresponding conducting polymers. The potential for the electropolymerization of BTDF was found to be dependent on the solvent composition. In CH2Cl2, polymer film deposition is achieved only at potentials higher than 1.3 V vs. Ag/Ag+, while in a 30/70 mixture of CH2Cl2/CH3CN the polymerization is efficient at 0.9 V. BEDOT-DF polymerizes at significantly lower potentials and more rapidly than BTDF. The electron-donating alkoxy substituents of the EDOT units lead to stabilization of the cation radical intermediates allowing the electropolymerization to proceed at 0.55 V. The neutral polymers are insoluble in common organic solvents and are stable to 300°C under nitrogen. Upon oxidation, both polymers show two intragap transitions at intermediate doping levels due to the formation of bipolaronic states and the oxidized polymers exhibit conductivities up to 10−4 S/cm. The redox-stimulated ion transport characteristics, studied by the electrochemical quartz crystal microbalance (EQCM) indicates that the electrolyte anions are the dominant mobile species. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35: 3627–3636, 1997  相似文献   

18.
Richard W. Heo 《Tetrahedron》2004,60(34):7225-7235
A substituted ferrocenophane, 1,1′-((1-tert-butyl)-1,3-butadienylene)ferrocene, was synthesized and polymerized via ring-opening metathesis polymerization (ROMP) to give soluble high molecular weight polymers with ferrocenylene units in the backbone. The monomer readily underwent polymerization upon exposure to a tungsten-based metathesis initiator, W(CHC6H4-o-OMe)(NPh)[OCMe(CF3)2]2 (THF), to give high molecular weight polymers (Mw=ca. 300,000). The molecular weights could be varied systematically by adjusting the monomer-to-catalyst ratio. UV/vis spectra revealed a bathochromic shift for the polymer, consistent with enhanced conjugation compared to the monomer. The polymer exhibited thermal properties similar to oligomeric poly(ferrocenylene). Cyclic voltammetry of the polymer suggested that the iron centers are coupled electronically. Upon doping with I2 vapor, the polymers displayed semiconducting properties (σ=10−5 S cm−1). Theoretical calculations were used to evaluate the nature of the bonding in these and related polymers.  相似文献   

19.
The synthesis and evaluation of a molecularly imprinted polymer (MIP) used as a selective solid-phase extraction sorbent and coupled to high-performance liquid chromatography (HPLC) for the efficient determination of sulfamerazine (SMR) in pond water and three fishes are reported. The polymer was prepared using SMR as the template molecule, methacrylic acid as the functional monomer and ethylene glycol dimethacrylate as the crosslinking monomer in the presence of tetrahydrofuran as the solvent. The SMR-imprinted polymers and nonimprinted polymers were characterized by FT-IR and static adsorption experiments. The prepared SMR-imprinted material showed a high adsorption capacity, significant selectivity and good site accessibility. The maximum static adsorption capacities of the SMR-imprinted and nonimprinted materials for SMR were 108.8 and 79.6 mg g−1, respectively. The relative selectivity factor of this SMR-imprinted material was 1.6. Several parameters influencing the solid-phase extraction process were optimized. Finally, the SMR-imprinted polymers were used as the sorbent in solid-phase extraction to determine SMR in pond water and three fishes with satisfactory recovery. The average recoveries of the MIP-SPE method were 94.0% in ultrapure water and 95.8% in pond water. Relative standard deviations ranging from 0.3% to 5.2% in MIP were acquired. The results for the SMR concentrations in crucian, carp and wuchang fish were 66.0, 127.1 and 51.5 ng g−1, respectively. The RSDs (n = 5) were 3.51%, 0.53% and 5.08%, respectively. The limit of detection (LOD) for SMR was 1 ng g−1 and the limit of quantitation (LOQ) was 3.5 ng g−1.  相似文献   

20.
This study is devoted to the influence of water on the mechanisms of photooxidation of anticorrosion coatings based on epoxy resins used in extremely aggressive media like the marine environment. The two principal environmental parameters to be considered are sunlight (UV-light) and water. It is important to understand the role of these two environmental parameters on the ageing of epoxy anticorrosion coatings. On the basis of the effect of photooxidation on the molecular structure under “dry” conditions, water was introduced into the ageing process with either alternating cycles of irradiation/immersion in water or simultaneously by irradiation of the polymer in water. The presence of water had two effects on the photodegradation of PKHJ® phenoxy resin; the first one was on the degradation of the main photoproduct (phenyl formates) formed during irradiation through a hydrolysis reaction leading to the release of formic acid. The second effect consisted of an increase in the photooxidation rate by the formation of photo-initiators.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号