首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
High-impact polystyrene (HIPS)/montmorillonite (MMT) nanocomposites were prepared via in-situ polymerization of styrene in the presence of polybutadiene, using intercalated cationic radical initiator-MMT hybrid. Incomplete exfoliation of the silicate layers in the HIPS nanocomposites was observed when a bulk polymerization was employed. On the other hand, the silicate layers were efficiently exfoliated in the PS matrix during a solution polymerization, due to the low extra-gallery viscosity, which can facilitate the diffusion of styrene monomers into the clay layers. The resulting exfoliated HIPS/MMT nanocomposites were characterized by X-ray diffraction, transmission electron microscopy, thermogravimetric analysis, particle size analysis, gel permeation chromatography, and dynamic mechanical analysis. The nanocomposites exhibited significant improvement in thermal and mechanical properties. For example, about 50% improvement in Young’s modulus was achieved with 5 wt% of clay, compared to the unmodified polymer counterpart.  相似文献   

2.
ABS-g-MAH (maleic anhydride) with different grafting degree, ABS/OMT (organo montmorillonite) and ABS-g-MAH/OMT nanocomposites were prepared via melt blending. The grafting reaction, phase morphology, clay dispersion, thermal properties, dynamic mechanical properties and flammability properties were investigated. FTIR spectra results indicate that maleic anhydride was successfully grafted onto butadiene chains of the ABS backbone in the molten state using dicumyl peroxide as the initiator and styrene as the comonomer and the relative grafting degree increased with increasing loading of MAH. TEM images show the size of the dispersed rubber domains of ABS-g-MAH increased and the dispersion is more uniform than that of neat ABS resin. XRD and TEM results show that intercalated/exfoliated structure formed in ABS-g-MAH/OMT nanocomposites and the rubber phase intercalated into clay layers distributed in both SAN phase and rubber phase. TGA results reveal the intercalated/exfoliated structure of ABS-g-MAH/OMT nanocomposites has better barrier properties and thermal stability than intercalated ones of ABS/OMT nanocomposites. The Tg of ABS-g-MAH/OMT nanocomposites was also higher than that of neat ABS/OMT nanocomposites. The results of cone measurements show that ABS-g-MAH/OMT nanocomposites exhibit significantly reduced flammability when compared to ABS/OMT nanocomposites even at the same clay content. The chars of ABS-g-MAH/OMT nanocomposites were tighter, denser, more integrated and fewer surface microcracks than ABS/OMT residues.  相似文献   

3.
A simulation of the degradation of high-impact polystyrene (HIPS), occurring during service life and mechanical recycling, was performed by multiple processing and thermo-oxidative ageing. All samples were characterized by differential scanning calorimetry (DSC), melt mass-flow rate (MFR) measurements, tensile testing and infrared spectroscopy (FTIR). Multiple processing and thermo-oxidative ageing clearly alter the oxidative stability and the elongation at break of the materials. These changes observed at a macroscopic scale have been related to chemical alterations in the structure of HIPS. The polybutadiene phase was demonstrated to be the initiation point of the degradative processes induced by processing, service life and mechanical recycling. Thermo-oxidative degradation affects more severely the degree of degradation of the material, so it may be deduced that the changes occurring during service life of HIPS are the part of the life cycle that mostly affects its further recycling possibilities and performance in second-market applications.  相似文献   

4.
Various analytical techniques (thermal analysis, vibrational spectroscopy, and chromatographic analysis) were used in order to monitor the changes in polymeric properties of recycled high-impact polystyrene (HIPS) throughout mechanical recycling processes. Three key quality properties were defined and analysed; these were the degree of mixing (composition), the degree of degradation, and the presence of low molecular weight compounds. Polymeric contaminations of polyethylene (PE) and polypropylene (PP) were detected in some samples using differential scanning calorimetry (DSC). Vibrational spectroscopy showed the presence of oxidised parts of the polymeric chain and gave also an assessment of the microstructure of the polybutadiene phase in HIPS. The presence of low molecular weight compounds in the HIPS samples was demonstrated using microwave-assisted extraction followed by gas chromatography-mass spectrometry (GC-MS). Several volatile organic compounds (VOCs), residues from the polymerisation, additives, and contaminations were detected in the polymeric materials. Styrene was identified already in virgin HIPS; in addition, benzaldehyde, α-methylbenzenaldehyde, and acetophenone were detected in recycled HIPS. The presence of oxygenated derivates of styrene may be attributed to the oxidation of polystyrene (PS). Several styrene dimers were found in virgin and recycled HIPS; these are produced during polymerisation of styrene and retained in the polymeric matrix as polymerisation residues. The amount of these dimers was highest in virgin HIPS, which indicated that emission of these compounds may have occurred during the first life-time of the products. This paper demonstrates that a combination of different analytical strategies is necessary to obtain a detailed understanding of the quality of recycled HIPS.  相似文献   

5.
The paper studies the morphology and mechanical properties of immiscible binary blends of the nylon 1010 and HIPS through the radiation crosslinking method. In this blend, the HIPS particles were the dispersed phases in the nylon1010 matrix. With increasing of dose, the elastic modulus increased. However, the tensile strength, elongation at break and the energy of fracture increased to a maximum at a dose of 0.34 MGy, then reduced with the increasing of dose. SEM photographs show that the hole sizes are not changed obviously at low dose and at high dose, remnants that cannot be dissolved in formic acid and THF can be observed in the holes and on the surface. TEM photographs showed that radiation destroys the rubber phases in the polymer blend.  相似文献   

6.
Polypropylene (PP)-montmorillonite nanocomposites have been prepared using isotactic PP homopolymers with different rheological properties, and a maleic anhydride grafted PP. Morphology and structure of the composites were investigated by using X-ray techniques (WAXD, SAXS) and transmission electron microscopy (TEM). The absence of pristine clusters of the clay and the presence of intercalated and exfoliated structures were shown for all the investigated samples. The nanocomposite prepared by using maleic anhydride grafted PP showed a widespread exfoliation. The thermal behaviour and degradation have been studied by means of differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). The incorporation of the montmorillonite improves the thermal stability in air atmosphere of all the investigated PPs, thanks to a physical barrier effect of the silicate layers.  相似文献   

7.
A melt blending method was used to prepare ABS/clay and ABS-g-MAH/clay nanocomposites. Cone calorimeter and advanced rheological extension system (ARES©) were employed to measure flammability and dynamic rheological properties. The main aim is to establish a relationship between the clay network structure and flammability properties of polymer nanocomposites. From the results of dynamic rheological measurements, it was found that the clay network structure was formed in ABS-g-MAH/clay nanocomposites, which strongly affected the flammability properties of the nanocomposites. The clay network improves the melt viscosity and results in restraint on the mobility of the polymer chains during combustion, which leads to significant improvement of flame retardancy for the nanocomposites.  相似文献   

8.
Thermal stability and flammability of silicone polymer composites   总被引:1,自引:0,他引:1  
Silicone polymer composites filled with mica, glass frit, ferric oxide and/or a combination of these were developed as part of a ceramifiable polymer range for electrical power cables and other high temperature applications. This paper reports on the thermal stability of polymer composites as determined by thermogravimetric techniques, thermal conductivity and heat release rate as measured by cone calorimetry. The effects of fillers on thermal stability and flammability of silicone polymer are investigated. Of the fillers studied, mica and ferric oxide were found to have a stabilising effect on the thermal stability of silicone polymer. Additionally, mica and ferric oxide were found to lower heat release rates during combustion, but only mica was found to increase time to ignition.  相似文献   

9.
10.
This paper presents a study of polyethersulfone (PES)/halloysite nanotube (HNTs) nanocomposites prepared by melt compounding either through a simple extrusion process or via a water-assisted extrusion procedure. Scanning and transmission electron microscopy techniques are combined with rheological measurements to assess the influence of polymer end groups (–Cl or –OH) and water injection on the HNTs dispersion state. A morphological transition form microcomposite to nanocomposite is achieved when replacing –Cl chain ends of PES by –OH groups, especially when water is injected during processing. By a combination of Soxhlet extraction and thermogravimetric analysis, we show that some PES(OH) chains are covalently bonded onto the aluminosilicate surface during extrusion. A mechanism describing the physico-chemical action of water is presented. The best system in terms of clay dispersion has been retained to characterize PES-HNTs nanocomposites with respect to their thermo-mechanical, thermal and fire (mass loss calorimetry and UL-94) properties. Dynamic mechanical analysis shows a significant enhancement in the storage modulus of halloysite-based nanocomposites when compared to the unfilled matrix. The improved thermal and thermo-oxidative stability of PES in presence of HNTs is mainly attributed to the labyrinth effect provided by individually dispersed nanotubes, which is reinforced during the decomposition process by the formation of a protective charred ceramic surface layer. The mechanism of action of HNTs for fire retardancy of PES presumably arises from a synergistic effect between physical (i.e. ceramic-like structure formation and mechanical reinforcement of the intumescent char) and chemical (i.e. charring promotion) processes taking place in the condensed phase. According to this study, the straightforward and cost-effective melt compounding route could pave the way for future development of high-performance nanoscale polymeric materials combining enhanced thermal properties and excellent flame retardant behaviour.  相似文献   

11.
Multiple processing and thermo-oxidation have been employed to simulate the degradative processes to which high-impact polystyrene (HIPS) is subjected during processing, service life, and mechanical recycling. A curve-fitting procedure has been proposed for the analysis of the individual bands corresponding to polybutadiene microstructure resulting from Raman spectroscopy. The analysis of the glass transition relaxations associated with the polybutadiene (PB) and polystyrene (PS) phases has been performed according to the free-volume theory. Both reprocessing and thermo-oxidative degradation are responsible for complex physical and chemical effects on the microstructure and morphology of PB and polystyrene PS phases, which ultimately affect the macroscopic performance of HIPS. Multiple processing affects PB microstructure and the free-volume parameter associated with the PS phase. Physical ageing of the PS phase predominates for shorter exposure to thermo-oxidation; after prolonged exposure, however, the chemical effects on the PB phase become significant and strongly influence the overall structure.  相似文献   

12.
A thermal degradation mechanism of polyvinyl alcohol/silica nanocomposites   总被引:1,自引:0,他引:1  
The thermal degradation mechanism of a novel polyvinyl alcohol/silica (PVA/SiO2) nanocomposite prepared with self-assembly and solution-compounding techniques is presented. Due to the presence of SiO2 nanoparticles, the thermal degradation of the nanocomposite, compared to that of pure PVA, occurs at higher temperatures, requires more reaction activation energy (E), and possesses higher reaction order (n). The PVA/SiO2 nanocomposite, similar to the pure PVA, thermally degrades as a two-step-degradation in the temperature ranges of 300-450 °C and 450-550 °C, respectively. However, the introduction of SiO2 nanoparticles leads to a remarkable change in the degradation mechanism. The degradation products identified by Fourier transform infrared/thermogravimetric analysis (FTIR/TGA) and pyrolysis-gas chromatography/mass spectrometric analysis (Py-GC/MS) suggests that the first degradation step of the nanocomposite mainly involves the elimination reactions of H2O and residual acetate groups as well as quite a few chain-scission reactions. The second degradation step is dominated by chain-scission reactions and cyclization reactions, and continual elimination of residual acetate groups is also found in this step.  相似文献   

13.
Polystyrene based nanocomposites (PNCs) with and without flame retardant additives were successfully prepared through a single-screw extrusion technique. The combination effect of nanoparticles and flame retardants was investigated with nanosilica and attapulgite clay as nanofillers, and with a NASA formulated SINK flame retardant. A comprehensive study was done by Cone Calorimetry, UL94 and TGA.The addition of nanoparticles to polystyrene generally improved the OI of polystyrene. The horizontal burning tests suggested that nanofiller types have different impacts on the flammability of nanocomposites. According to the vertical burning tests and oxygen indices, it was found that polystyrene/silica and polystyrene/attapulgite clay PNCs alone are not flame retardant. In fact, the materials burned faster. However, the combination of nanocomposites with the SINK flame retardant significantly altered the thermal stability, and flammability of the materials. A remarkable reduction in heat release rates of polystyrene was achieved for both silica and attapulgite with flame retardant nanocomposites. For instance, the introduction of 20% SINK into PS reduced the PHRR of PS from 1212 to 838 (−31%); 10% silica reduced it from 1212 to 1060 (−13%), while the combination of silica and SINK reduced it to 530 (−56%), which clearly shows interaction between nanosilica and SINK.  相似文献   

14.
While a great variety of high temperature polyimide materials exist, these materials are being subjected to higher and higher use temperatures in oxidative and environmentally aggressive environments. There is a limit to the extent one can take a polyimide before it will oxidize and subsequently suffer property degradation, thermal decomposition, and structural failure. Therefore, we instead sought to use materials which do not oxidize (inorganic materials) to enhance the polyimide composition and perhaps move the properties of the organic polymer more into the realm of ceramics while maintaining polyimide composite weights and processing advantages. In this paper we present results of the combination of inorganic micron sized particles with and without carbon nanofibers to produce a variety of highly inorganic particle filled polyimides. These polyimides were tested for thermal stability and flammability in resin pellet form and as a protective coating for a carbon-fiber composite structure. Our results demonstrate that the resin with inorganic particles exhibited significant reductions in flammability by themselves, but minimal flammability reduction when used as a thin coating to protect a carbon-fiber composite. Further, the gains in thermal stability are limited by the thermal stability of the polyimide matrix, suggesting that more work is needed in measuring the limits of inorganic fillers to improve thermal stability. Still, the results are promising and may yield polyimide systems useful for providing resistance to damage from high heat flux exposures/fire risk scenarios.  相似文献   

15.
Polycarbonate was melt blended with solid bisphenol A bis(diphenyl phosphate), and a series of organoclays. Effects of the organoclay modifiers on the flammability, thermal and mechanical properties of the nanocomposites were studied by limiting oxygen index, UL-94 burning test, thermogravimetric analysis, differential scanning calorimetry, tensile test and dynamic mechanical analysis. Although all the nanocomposites exhibit an intercalated-exfoliated morphology, they vary in the magnitude of intercalation revealed by X-ray diffraction and transmission electron microscopy. Flammability of the nanocomposites is strongly related to the thermal stability rather than the morphology. Glass transition temperature (Tg) and mechanical properties are controlled by both the morphology and the affinity of the organoclays with the matrix. The modifier containing hydroxyl moiety has stronger interactions with the matrix but it can promote its degradation, thus the corresponding nanocomposite exhibits a better intercalated morphology, higher Tg, superior strength and modulus however a worse thermal stability and flame retardancy. An additional silane within the organoclays would make the organoclays more compatible with the matrix but be a steric obstacle to the intercalation of the matrix chains; however, flame retardancy of the corresponding nanocomposite is enhanced due to the flame retardant nature of the silane. Similarly, the modifier bearing two long alkyl tails shows stronger affinity with the matrix than the one bearing a single tail, but it would hinder the intercalation due to the steric effect. These establishments between organoclay modifiers and the properties of nanocomposites might be guidance for developing materials with practical applications.  相似文献   

16.
Polypropylene has been compounded with a commercial organoclay both in the absence and in the presence of hydrogenated oligo(cyclopentadiene) (HOCP) as a compatibiliser. The characteristics and the properties of the nanocomposites were evaluated and compared. HOCP favours the intercalation of the polypropylene in the organoclay galleries and enables a more homogeneous dispersion of the nanoclay throughout the polymer matrix. In the compatibilised nanocomposite, the diluent effect ascribed to the HOCP component is associated with the nucleating action of the nanoclay, resulting in the development of the β-crystalline form of the polypropylene. The presence of HOCP preserves the molecular weight of the polymer during the processing and gives good overall mechanical properties to the compatibilised nanocomposite. The thermo-oxidative degradation of the polypropylene is strongly delayed in the compatibilised nanocomposite.  相似文献   

17.
Chemical modification based on incorporation of flame retardants (FR) into the polymer backbone was used in order to reduce polystyrene flammability. Boronated styrenes such as 4‐vinylphenylboronic acid (StB(OH)2) and 6‐methyl‐2‐(4‐vinylphenyl)‐1,3,6,2‐dioxazaborocane‐4,8‐dione (StBcyclo) were applied as reactive FR. Homo‐ and copolymers of boronated styrenes and styrene (St) were synthesized with different feed ratios using free radical polymerization. It yielded in series of (co)polymers with various amounts of StB(OH)2 and StBcyclo (5–20% mol/mol of St). Copolymer compositions were determined by 1H NMR. The relative reactivity ratios of system St‐StBcyclo were determined by applying the Jaacks method. Glass transition temperature and thermal stability of obtained (co)polymers were determined from DSC and TGA analysis, respectively. The pyrolysis combustion flow calorimeter was applied as a tool for assessing the flammability of the synthesized (co)polymers. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

18.
Polypropylene/organoclay (PP/OMMT) nanocomposites were prepared in a twin-screw corotating extruder using two methods. The first method was the dilution of commercial (PP/50% Nanofil SE3000) masterbatch in PP (or PP with commercial flame retardant). The second method consists of two stages was the extrusion of maleic anhydride grafted polypropylene (PP-g-MAH) with commercially available organobentonite masterbatch in first stage and dilution of the masterbatch in PP (or PP with commercial flame retardant) in second stage. XRD results showed no intercalation in composites obtained from commercial masterbatch without compatibilizer and semi - delamination for compatibilized systems. Tensile tests revealed that nanocomposites with 5% of organoclay have a slightly higher tensile modulus and tensile strength than pristine PP, however addition of the commercial flame retardant (FR) reduces mechanical parameters to roughly the level of those for neat PP. PP/OMMT composites have approx. 25% higher oxygen index than pristine PP, and this changes slightly after the addition of FR. The cone calorimeter tests showed a decrease of a heat release rate (HRR) and a mass loss rate (MLR) after the addition of FR.  相似文献   

19.
In this study, morphological properties of polypropylene (PP)/ethylene vinyl acetate copolymer (EVA) (75/25 wt/wt) blend-based nanocomposites containing various amounts of organically modified montmorillonite (OMMT) were primarily investigated. The incorporation of compatibilizer into nanocomposites decreased EVA droplet size in PP matrix while increasing compatibilizer/OMMT ratio showed a dual behavior with respect to the variations of OMMT interlayer spacing. By a rough estimation it was found that at EVA droplet size of Dn = 0.43 μm, the highest OMMT interlayer spacing would be acheived. Increasing Dn had a negative effect on the OMMT interlayer spacing. Activation energy of thermal/thermo-oxidative degradation based on Flynn model was obtained. Isothermal degradation test was also performed and desired temperature range for predicting degradation behavior was obtained by means of a free prediction model. An attempt was made to establish a correlation between morphological and thermal/thermo-oxidative parameters and also charred residue morphology. A mechanism for degradation process was proposed according to the changes of chemical bonds during the degradation process probed by FTIR analysis.  相似文献   

20.
Fumed silica (FS) and synthetic boehmite alumina (BA) nanofillers with and without surface treatments were incorporated in 5 wt. % in low density polyethylene (LDPE) through melt blending. FS was treated using hexadecyl silane, whereas BA using octyl silane and alkylbenzene sulfonic acid. The related nanocomposites were subjected to pyrolysis gas chromatography-mass spectrometry (Py-GC-MS) and thermogravimetric analysis (TGA) under isothermal and dynamic conditions, respectively. Py-GC-MS results proved that the thermal degradation mechanism did not change in the presence of the nanofillers. The latter suppressed the formation of high molecular weight hydrocarbons and affected the relative amounts of diene/alkene/alkane fragments for each hydrocarbon fraction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号