首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The use of clay nanofillers offers a potential route to improved barrier properties in polylactide films. Magnesium-aluminium layered double hydroxides (LDHs) are interesting in this respect and we therefore explored synthesis of PLA-LDH nanocomposites by ring-opening polymerization. This method is attractive because it should ensure good dispersion of LDH in the polymer. The effect of adding either LDH carbonate (LDH-CO3) or laurate-modified LDH (LDH-C12) was investigated. X-ray diffraction, scanning electron microscopy, and transmission electron microscopy revealed that exfoliated nanocomposites were obtained when using LDH-C12 but that LDH-CO3 gave a partly phase-separated morphology. Thermogravimetric analysis showed that PLA-LDH combinations exhibited higher degradation onset temperatures and differential scanning calorimetry confirmed that LDHs can act as nucleating agents. However, PLA molecular weight was significantly reduced when in-situ polymerization was conducted in the presence of the LDHs and we suggest that chain termination via LDH surface hydroxyl groups and/or metal-catalyzed degradation could be responsible.  相似文献   

2.
Cd-Cr and Zn-Cd-Cr layered double hydroxides (CdCr-LDH and ZnCdCr-LDH) containing alkyl sulfate as the interlamellar anion have been prepared through a coprecipitation technique. The resulting compounds were characterized using X-ray diffraction, infrared spectroscopy, thermogravimetric analysis, and scanning electron microscopy. Magnetic property measurements indicate that antiferromagnetic interactions occur between the chromium ions in the two compounds at low temperatures. The introduction of zinc influences the ligand field of CrIII and the CrIII-CrIII interactions in the LDH compound. It is found that both CdCr-LDH and ZnCdCr-LDH can be delaminated by dispersion in formamide, leading to translucent and stable colloidal solutions.  相似文献   

3.
A new nanocomposite was obtained by dispersing an adipate-modified layered double hydroxide (Ad-LDH) with adipic acid and hexamethylene diamine. These samples were polymerized in the solid phase under a nitrogen flow for 200 min at 190 °C. The structural and compositional details of the nanocomposite were determined by powder X-ray diffraction (PXRD), fourier transform infrared (FTIR) spectroscopy, focused ion beam (FIB), thermogravimetric analysis (TGA) and differential thermal analysis (DTA). The PXRD patterns and FIB images show a partially intercalated and partially exfoliated dispersion of layered crystalline materials in the polyamide 6.6 matrix. The best dispersion level is achieved in polyamide 6.6/LDH nanocomposites with low LDH loading. Some residual tactoids and particle agglomerates are also evident at high concentration. The best thermal stability of the nanocomposites is shown by the sample with 0.1% LDH content, for which it is higher than that of pure polyamide.  相似文献   

4.
Nanocomposites based on layered double hydroxides (LDH) and poly(p-dioxanone) (PPDO) were prepared by melt processing using dodecylbenzene sulfonate (DBS) and 4-hydroxybenzene sulfonate (HBS) as organic modifiers. The incorporation of organic anions in LDH was demonstrated by wide-angle X-ray scattering (WAXS) and Fourier transform infrared (FTIR). The dispersion degree of the organically modified LDHs in the PPDO matrix was analyzed by WAXS, indicating that only the LDH modified with HBS was exfoliated. The effect of the organically modified LDHs on the thermal stability of PPDO was studied using thermogravimetric analysis (TGA). The thermal stability of PPDO matrix was enhanced by the incorporation of the LDH modified with HBS due to the shielding effect of the exfoliated layers. In contrast, the LDH modified with DBS produced a decrease of the thermal stability of PPDO, probably due to hydrolytic decomposition of ester group. The thermogravimetric analysis also showed that the organo-modified LDH did not modify the thermal decomposition mechanism of the polymer, but had an effect on the thermal stability.  相似文献   

5.
The synergistic effects of zinc oxide (ZnO) with layered double hydroxides (LDH) in ethylene vinyl acetate copolymer/LDH (EVA/LDH) composites have been studied using thermal analysis (TG), limiting oxygen index (LOI), UL-94 tests, and cone calorimeter test (CCT). The results from the UL-94 tests show that the ZnO can also act as flame retardant synergistic agents in the EVA/LDH composites. The CCT data indicated that the addition of ZnO in EVA/LDH system can greatly reduce the heat release rate. The TG data show that the ZnO can increase the thermal degradation temperature and the charred residues after burning.  相似文献   

6.
Layered double hydroxides (LDHs) are new nanofillers which exhibit improved thermal and flammability properties in various kinds of polymer matrices. These materials have certain advantages over conventional metal hydroxides and also layered silicates so far as the flame retardancy is concerned. In this article, flammability and thermal properties of the nanocomposite based on low density polyethylene (LDPE) and Mg-Al based layered double hydroxide (Mg-Al LDH) are reported in detail. The nanocomposites containing different LDH concentrations were prepared by melt-compounding using a tightly intermeshing co-rotating twin-screw extruder. The morphological analysis reveals an exfoliated/intercalated type LDH particle morphology in these nanocomposites. The thermogravimetric analysis (TGA) shows that even a small amount of LDH improves the thermal stability and onset decomposition temperature in comparison with the unfilled LDPE. The heat release rate (HRR) and its maximum (PHRR) during cone-calorimeter investigation are found to be reduced significantly with increasing LDH concentration. The nanocomposites not only exhibit reduced total heat released (measure of propensity to produce long duration fire), but also lower tendency to fast fire growth (measured by the ratio of PHRR and time of ignition). The limited oxygen index (LOI) and the dripping behavior are also improved with increasing LDH concentration.  相似文献   

7.
Fire and thermal properties of ethylene vinyl acetate (EVA) composites prepared by melt blending with layered double hydroxides (LDH) have been studied. Two types of LDHs intercalated with borate anion were prepared using the coprecipitation method and the metals Mg2+, Zn2+ and Al3+. Characterization of the LDHs and the EVA composites was performed using X-ray diffraction, thermogravimetric analysis, and cone calorimetry. Thermal analyses show that the addition of LDHs improves the thermal stability of EVA. Fire properties evaluated using the cone calorimeter were significantly improved in the EVA/LDH composites. The peak heat release rate was reduced by about 40% when only 3% by weight of the LDH was added to the copolymer. Comparison of the fire properties of the LDHs with those of aluminum trihydrate (ATH), magnesium hydroxides (MDH), zinc hydroxide (ZH) and their combinations at 40% loading, reveal that the LDHs were more effective than when MDH and ZH are used alone.  相似文献   

8.
双(羟基)金属复合氧化物的表面改性   总被引:10,自引:0,他引:10  
水滑石;硬脂酸;湿法表面改性;双(羟基)金属复合氧化物的表面改性  相似文献   

9.
In this article, we address in situ synthesis of polyethylene terephthalate (PET) nanocomposites using the bis (2‐hydroxyethyl) phthalate monomer and inorganic layered materials (sulfanilic acid salt‐modified magnesium aluminum‐layered double hydroxides [MgAl LDH‐SAS] and Dimethyloctadecyl [3‐(trimethoxysilyl) propyl] ammonium chloride [DTSACl] and tetraethyl orthosilicate [TEOS]‐ modified clay [CL120‐DT]). The dispersion morphology of the synthesized nanocomposites was evaluated using XRD and TEM, from these results, it was confirmed that 0.5 wt% loaded PET/MgAl LDH‐SAS and PET/CL120‐DT nanocomposites have flocculated and intercalated morphologies, respectively. Thermomechanical analyses were performed by thermogravimetric analysis, dynamic mechanical analysis, and differential scanning calorimetry, respectively. Moreover, the water vapor transmission rate (WVTR) values of a pure PET, PET/CL120‐DT 0.5 wt%, and PET/MgAl LDH‐SAS 0.5 wt% nanocomposites were found to be 49, 45, and 46 g·m?2·day?1, respectively. Furthermore, the gas barrier properties of PET composite films containing various amounts of inorganic nanoparticles were investigated using Gas permeability analysis (GPA).  相似文献   

10.
Mg‐Al‐Fe ternary‐layered double hydroxides (LDHs) were synthesized by a calcination‐rehydration method using Bayer red mud. The products were characterized using X‐ray diffraction and thermogravimetric analysis. The flammability and thermal degradation of ethylene‐vinyl acetate/layered double hydroxides/zinc borate (EVA/LDHs/ZB) composites were studied with limiting oxygen index, UL 94, cone calorimeter test, smoke density test, and thermogravimetry‐Fourier transform infrared spectrometry. Although limiting oxygen index value of the composites decreased with increasing ZB amount, a suitable addition of ZB can apparently improve the UL 94 rating of the material. The heat release rate of the 5% ZB containing ternary composites decreased compared with the EVA/LDHs composites. It is obtained from smoke density test that ZB could help smoke suppression. The ternary composites possessed a higher thermal stability than the EVA/LDHs composites. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

11.
Layered double hydroxides are a type of layered stacked compound, which can be intercalated with organic‐molecule modifiers. An ion‐exchange process for layered double hydroxide (LDH) was used to intercalate water‐soluble sulfanilic acid salt (SAS) and dimethyl 5‐sulfoisopthalate (DMSI) into lithium aluminum layered double hydroxides (LiAl LDHs). In this work, a hydrothermal process was used to modify LiAl LDHs, and the modified LiAl LDHs were treated with either SAS or DMSI through an ion‐exchange process and were then intercalated using bis‐hydroxyethylene terephthalate (BHET). The results indicate that the modified LiAl LDHs improved the interlayer compatibility between the PET and LiAl LDH layers; thus, enabling the oligomer molecules to more easily enter the gallery of the LiAl LDH layers so that polymer chains could be included between the LDH layers during polymerization of the matrix. The better barrier, mechanical properties, and thermal stability of these new types of PET nanocomposites are discussed.  相似文献   

12.
Protoporphyrin IX was immobilized in the interlayer region of Mg–Al layered double hydroxides in order to produce biocompatible nanohybrids that could find applications in photodynamic therapy. Protoporphyrin IX and perfluoroheptanoic acid were also cointercalated to produce nanohybrids that combine the oxygen dissolving properties of perfluorocarbons with the photodynamic effect of the porphyrin. The various nanohybrids were characterized by using X-ray diffraction, Fourier transformed infrared spectroscopy, ultraviolet-visible spectroscopy and thermogravimetric analysis. In addition to the intercalation of protoporphyrin IX in the interlayer region of the layered double hydroxides, the X-ray diffraction pattern also showed that intercalation of perfluoroheptanoic acid resulted in the formation of a bilayer between the inorganic layers. Photooxidation experiments using substrates such as imidazole, 2,3-dimethyl-2-butene or linoleic acid, demonstrated the generation of singlet oxygen by these nanohybrids.  相似文献   

13.
Two hydroxy double salts (HDSs), zinc copper hydroxy acetate (ZCA) and zinc nickel hydroxy acetate (ZNA), and an analogous layered compound, zinc hydroxy acetate (ZHA), have been prepared by a coprecipitation method. The thermal degradation of these materials was characterized via thermogravimetric analysis (TGA), differential thermal analysis (DTA), and TGA coupled with Fourier transform infrared spectroscopy of gas-phase products, TGA-FTIR. Loss of physisorbed and interlayer H2O was observed between 50 and 150 degrees C for all compounds. Acetic acid, acetone, water, and CO2 were released at high temperatures with relative acetone yields found to be dependent on precursor identity, with very little formed from ZCA compared with ZHA and ZNA. Combined FTIR and XRD analysis of solid residues extracted at different points in the heating profile suggests that ketonization occurs via dissociative adsorption of acetic acid on ZnO surfaces. Nanometer-sized ZnO particles were formed from ZHA, showing slight preferential growth in the ZnO (002) lattice direction, while the presence of a second metal, Ni or Cu, served to retard ZnO crystallite growth at temperatures below 600 degrees C and eliminate preferential growth. ZCA leads to the formation of reduced copper species (metallic copper and Cu2O) when heated to 250 degrees C.  相似文献   

14.
Thermally stable modifier were used to modify clay or lithium aluminum layered double hydroxides (LiAl LDH) nanoparticles for preparation of poly (ethylene terephthalate)/clay or LiAl LDH nanocomposites. The effect of modify agent, studied by microcompouding process. The PET nanocomposites which were made by twin‐screw microcompounder dispersion morphology of inorganic layered materials in nanocomposites could be explained by wide‐angle X‐ray diffraction (WXRD), and transmission electron microscopy (TEM). Nanocomposite also formed the better mechanical, UV resistance, and gas barrier properties. Optical properties and crystallization behaviour of these new types of nanocomposites are investigated in this paper.  相似文献   

15.
The disorderly exfoliated layered double hydroxides/poly(methyl methacrylate) (LDHs/PMMA) nanocomposites were obtained in a two-stage process by the in situ bulk polymerization of methyl methacrylate (MMA) in the presence of 10-undecenoate intercalated LDH (LDH-U). The dispersed behavior of the LDH-U in the PMMA matrix was identified by using X-ray diffraction (XRD), transmission electron microscopy (TEM), and UV/visible transmission spectroscopy. All these nanocomposites showed significantly enhancement of glass transition temperature (Tg) and the decomposition temperatures compared to pristine PMMA, as identified in differential scanning calorimetry (DSC) and thermogravimetric (TGA) analysis. The tensile modulus of these nanocomposites was also enhanced by incorporating the LDH-U into the PMMA matrix and increased as the amount of LDH-U increased. According to the analytical method of Ozawa-Flynn, the degradation activation energies of these nanocomposites are higher than that of pristine PMMA.  相似文献   

16.
A series of five oleate-containing layered double hydroxides with varied ratios of zinc to magnesium, i.e., with the general formula Zn2−yMgyAl(OH)6 [CH3(CH2)7CHCH(CH2)7COO]·nH2O, were synthesized and used to prepare nanocomposites of polypropylene (PP). The nanomaterials were characterized by elemental analysis, attenuated total reflection-infrared spectroscopy (ATR-IR), X-ray diffraction (XRD) and thermogravimetric analysis (TGA), while the composites were characterized by XRD, TGA, transmission electron microscopy (TEM) and cone calorimetry. The zinc-containing LDH showed better dispersion in the polymer at the micrometer level than did the magnesium-containing LDH while both are equally well-dispersed at the nanometer level. The magnesium-containing composites led to more thermally stable systems in TGA experiments, while the zinc systems gave greater reductions in heat release rate during combustion. Dispersion was also affected by the amount of PP-g-MA which was present. More PP-g-MA gave better dispersion and a significantly reduced peak heat release rate, i.e., enhanced fire performance.  相似文献   

17.
Polypropylene(PP)/MgAl layered double hydroxide(MgAl LDH) nanocomposites were synthesized by refluxing PP and dodecyl sulfate-intercalated MgAl LDH[MgAl(DS)] in non-polar xylene. Their structure, thermal and crystallization properties were studied via X-ray diffraction(XRD), transmission electron microscopy(TEM), thermogravimetric analysis(TGA), differential scanning calorimetry(DSC), and polarized light microscopy(PLM). The nanoscaled dispersion of MgAl(DS) nanolayeres in the PP matrix was verified by the disappearance of the d(003) XRD diffraction peak of MgAl(DS) and observation of TEM image. The DSC data show that the SDS/LDH inorganic components negatively affect the crystallization properties of PP and decrease the size of PP spherulites because the inorganic components act as additional nuclei. The PP/MgAl LDH nanocomposites have a faster charring progress in a temperature range of 250―430 °C and a better thermal stability above 320 °C than pure PP.  相似文献   

18.
Copolymer nanocomposites were prepared by suspension copolymerization of bis[2-(methacryloyloxy)ethyl] phosphate and methyl methacrylate, together with bis(2-ethylhexyl) phosphate layered double hydroxide and a montmorillonite, Cloisite 93A. X-ray diffraction and transmission electron microscopy were used to characterize the morphology of nanocomposites and the dispersion of additives in the polymer. The thermal stability of the nanocomposites has been assessed by thermogravimetric analysis and cone calorimetry has been used to study the fire properties. Bis[2-(methacryloyloxy)ethyl] phosphate not only copolymerized with MMA, but also aids in the dispersion of additives in PMMA. The copolymer nanocomposites have better dispersion and higher degradation temperature and more char mass than the corresponding PMMA nanocomposites. The largest peak reduction in the heat release rate of the copolymer nanocomposites are 52 and 65% for LDH and MMT additives, respectively.  相似文献   

19.
In the present study, highly efficient and simple dispersive solid‐phase extraction procedure for the determination of haloacetic acids in water samples has been established. Three different types of layered double hydroxides were synthesized and used as a sorbent in dispersive solid‐phase extraction. Due to the interesting behavior of layered double hydroxides in an acidic medium (pH?4), the analyte elution step was not needed; the layered double hydroxides are simply dissolved in acid immediately after extraction to release the analytes which are then directly introduced into a liquid chromatography with tandem mass spectrometry system for analysis. Several dispersive solid‐phase extraction parameters were optimized to increase the extraction efficiency of haloacetic acids such as temperature, extraction time and pH. Under optimum conditions, good linearity was achieved over the concentration range of 0.05–100 μg/L with detection limits in the range of 0.006–0.05 μg/L. The relative standard deviations were 0.33–3.64% (n = 6). The proposed method was applied to different water samples collected from a drinking water plant to determine the concentrations of haloacetic acids.  相似文献   

20.
Conventional and microwave heating routes have been used to prepare PET–LDH (polyethylene terephthalate–layered double hydroxide) composites with 1–10 wt% LDH by in situ polymerization. To enhance the compatibility between PET and the LDH, terephthalate or dodecyl sulphate had been previously intercalated in the LDH. PXRD and TEM were used to detect the degree of dispersion of the filler and the type of the polymeric composites obtained, and FTIR spectroscopy confirmed that the polymerization process had taken place. The thermal stability of these composites, as studied by thermogravimetric analysis, was enhanced when the microwave heating method was applied. Dodecyl sulphate was more effective than terephthalate to exfoliate the samples, which only occurred for the terephthalate ones under microwave irradiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号