首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The flame retardancy and thermal stability of ammonium polyphosphate/tripentaerythritol (APP/TPE) intumescent flame retarded polystyrene composites (PS/IFR) combined with organically-modified layered inorganic materials (montmorillonite clay and zirconium phosphate), nanofiber (multiwall carbon nanotubs), nanoparticle (Fe2O3) and nickel catalyst were evaluated by cone calorimetry, microscale combustion calorimetry (MCC) and thermogravimetric analysis (TGA). Cone calorimetry revealed that a small substitution of IFR by most of these fillers (≤2%) imparted substantial improvement in flammability performance. The montmorillonite clay exhibited the highest efficiency in reducing the peak heat release rate of PS/IFR composite, while zirconium phosphate modified with C21H26NClO3S exhibited a negative effect. The yield and thermal stability of the char obtained from TGA correlated well with the reduction in the peak heat release rate in the cone calorimeter. Since intumesence is a condensed-phase flame process, the MCC results showed features different from those obtained from the cone calorimeter.  相似文献   

2.
To increase thermal stability and flammability of high-impact polystyrene (HIPS) nanocomposites with silica nanoparticles and two types of polyphosphate flame retardants were prepared by extrusion. Nanocomposites were characterized by thermogravimetric analysis, differential scanning calorimetry, X-ray diffraction, scanning electron microscopy, limiting oxygen index (LOI) analysis and the evaluation of mechanical properties. It was found that organic polyphosphate in combination with silica increased thermal stability and fire retardancy by 50% in LOI test. Morphology characterization revealed existence of crystalline order which affected mechanical properties; tensile strength was approximately the same as virgin HIPS while elasticity was sharply decreased. Ammonium polyphosphate did not affect mechanical properties as much as the organic material but was not equally efficient in flame retardancy which was just marginally increased.  相似文献   

3.
Montmorillonite was organically modified using an ammonium salt containing 4-acetylbiphenyl. This clay (BPNC16 clay) was used to prepare polystyrene (PS), acrylonitrile butadiene styrene (ABS) and high impact polystyrene (HIPS) nanocomposites. Polystyrene nanocomposites were prepared both by in situ bulk polymerisation and melt blending processes, while the ABS and HIPS nanocomposites were prepared only by melt blending. X-ray diffraction and transmission electron microscopy were used to confirm nanocomposite formation. Thermogravimetric analysis was used to evaluate thermal stability and the flammability properties were evaluated using cone calorimetry. By thermogravimetry, BPNC16 clay was found to show high thermal stability, and by cone calorimetry, a decrease in both the peak heat release rate and the mass loss rate was observed for the nanocomposites.  相似文献   

4.
Nanocomposites of poly (vinyl alcohol) with ethylamine modified zirconium phosphate (ZrP-EA) were prepared by solution blending. Their morphologies were elucidated with X-ray diffraction and transmission electron microscopy, while the thermal stability and flammability performance were characterized by thermogravimetric analysis, Fourier transform infrared spectra and microscale combustion calorimetry. It was established that the morphology of the nanocomposites evolved as ZrP-EA content increased. In the nanocomposites, catalytic degradation of the acetate groups remaining in poly (vinyl alcohol) occurred and catalytic carbonization was observed. Microscale combustion calorimetry revealed that the flammability performance of poly (vinyl alcohol) was improved by the introduction of zirconium phosphate nanoplatelets.  相似文献   

5.
6.
Standard flammability tests, like the Cone Calorimeter, were developed several decades ago and provided sufficient flammability data for the purposes of the time. However, recent pyrolysis models have revealed the limitations of the standard test in providing adequate data for current flammability analysis and modelling. This paper reviews the assumptions in the standard test and proposes a novel sample holder for the cone calorimeter which incorporates a large block of aluminium at the rear face of the sample under test. This allows the heat losses at the rear face of the sample to be measured precisely and enables more accurate calculation of the material flammability properties. Tests of PA6 and a nano-composite of PA6 & Cloisite 30B, carried out using the standard and new sample holders, are presented and discussed. The peak of high heat release rate observed in standard tests of PA6 is not observed using the novel sample holder, where the burning behaviour of PA6 and the nano-composite material are largely similar. The implications of these observations are discussed.  相似文献   

7.
The focus of this study is an investigation of the effect of oxidation state of phosphorus in phosphorus-based flame retardants on the thermal and flame retardant properties of polyurea and epoxy resin. Three different oxidation states of phosphorus (phosphite, phosphate and phosphine oxide) additives, with different thermal stabilities at a constant phosphorus content (1.5 wt.%) have been utilized. Thermal and flame retardant properties were studied by TGA and cone calorimetry, respectively. The thermal stability of both polymers decreases upon the incorporation of phosphorus flame retardants irrespective of oxidation state and a greater amount of residue was observed in the case of phosphite. Phosphate was found to be better flame retardant in polyurea, whereas phosphite is suitable for epoxy resin. Phosphite will react with epoxy resin by trans-esterification, which is demonstrated by FTIR and 31P NMR. Further, TG–FTIR and XPS studies also provide information on flame retardancy of both polymers with phosphorus flame retardants.  相似文献   

8.
Thermal stability and flammability of silicone polymer composites   总被引:1,自引:0,他引:1  
Silicone polymer composites filled with mica, glass frit, ferric oxide and/or a combination of these were developed as part of a ceramifiable polymer range for electrical power cables and other high temperature applications. This paper reports on the thermal stability of polymer composites as determined by thermogravimetric techniques, thermal conductivity and heat release rate as measured by cone calorimetry. The effects of fillers on thermal stability and flammability of silicone polymer are investigated. Of the fillers studied, mica and ferric oxide were found to have a stabilising effect on the thermal stability of silicone polymer. Additionally, mica and ferric oxide were found to lower heat release rates during combustion, but only mica was found to increase time to ignition.  相似文献   

9.
The effect of layered silicate nanoclays, nano-silica and double-walled carbon nanotubes (DWNTs) on the thermal stability and fire reaction properties of two aerospace grade epoxy resins (a high temperature curing tetra-functional and a low temperature curing bi-functional resin) has been investigated using thermal analysis, cone calorimetry, LOI and UL-94 techniques. The morphology of the polymer-clay nanocomposites, determined by X-ray diffraction and transmission electron microscopy indicated intercalated structures. The addition of nanoclays (5-wt%) to both resins had a thermal destabilisation effect in the low temperature regime (<400 °C), but led to higher char yield at higher temperatures. The inclusion of nano-silica at 30-wt% significantly improved the thermal stability of the resins while DWNTs had an adverse effect due to their poor dispersion in the matrix. The nanoclays and carbon nanotubes significantly increased the fire resistance of the tetra-functional epoxy resin while a minimal effect was observed for the bi-functional resin.  相似文献   

10.
A series of aluminum-containing layered double hydroxides (LDHs), containing Mg, Ca, Co, Ni, Cu and Zn as the divalent metals, have been prepared by the co-precipitation method and used to prepare nanocomposites of PMMA by in situ bulk polymerization. The additives were characterized by Fourier transform infrared spectroscopy, X-ray diffraction spectroscopy (XRD) and thermogravimetric analysis while the polymer composites were characterized by XRD, transmission electron microscopy, differential scanning calorimetry and cone calorimetry. Polymerization of methyl methacrylate in the presence of these undecenoate LDHs results in composites with enhanced thermal stability. The glass transition temperatures of the composites and the pristine polymers are found to be around 110 °C; this suggests that the presence of these additives has little effect on the polymer. It is found that the additive composition and the dispersion state of LDHs agglomerates in the polymer matrix influence the fire properties of composites as measured by cone calorimetry.  相似文献   

11.
Thirteen phosphorus-containing flame retardants were synthesized in this work. The solubilities of flame retardant [(6-oxide-6H-dibenz[c,e][1,2]oxaphosphorin-6-yl)-methyl]-butanedioic acid (DDP) in selected solvents are measured. TGA measurements of the 13 phosphorus-containing flame retardants were carried out and thermal stabilities of three flame-resistant PET (FRPET) resins were investigated. A FRPET incorporated by DDP with terephthalic acid and ethylene glycol reported in literature was also discussed and compared. The thermal stability of the FRPET is improved by the incorporation of phosphorus-containing flame retardants. The LOI values of all phosphorus-containing polyesters are higher than 27%. The improvement of the flame-resistant ability is due to the formation of the char that is not only caused by the existence of phosphorus elements in the resin but also by the relative large number of carbon atoms of the phenyl group in the flame retardants.  相似文献   

12.
A monomer, acryloxyethyl phenoxy phosphorodiethyl amidate (AEPPA), was synthesized and characterized using Fourier transform infrared (FTIR), 1H nuclear magnetic resonance spectroscopy (1H NMR) and 31P NMR. The copolymer with various amounts of styrene (St) was obtained by the free radical bulk polymerization between AEPPA and St, and characterized using 1H NMR. The thermal properties of the copolymers were investigated with thermogravimetric analysis (TGA) in air and nitrogen atmosphere, and differential scanning calorimetry (DSC). The TGA results in air indicated the copolymers with AEPPA show higher thermal stability than those without AEPPA. However, the TGA results in nitrogen showed that the decomposition temperature decreased and the char residue increased with the increase of AEPPA. The glass transition temperature (Tg) of the copolymers from DSC indicated that a inverse proportion was observed between Tg and the amount of AEPPA incorporated. The flammability of the copolymers was evaluated by microscale combustion calorimeter (MCC). The MCC results showed that AEPPA can decrease the peak heat release rate (PHRR) and the heat release capacity (HRC), and the sample CP10 shows the lowest PHRR and HRC.  相似文献   

13.
Conventional thermally durable materials such as metals are being replaced with heat resistant engineering polymers and their composites in applications where burn-through resistance and structural integrity after exposure to fire are required. Poly aryl ether ether ketone (PEEK) is one such engineering polymer. Little work has been published with regards to the flammability of PEEK and its filled composites. The current study aims to assess the flammability and fire behaviour of PEEK and its composites using thermogravimetric analysis, pyrolysis combustion flow calorimetry, limiting oxygen index, a vertical flame resistance test, and fire (cone) calorimetry.  相似文献   

14.
Thermal properties of epoxy resin nanocomposites based on hydrotalcites   总被引:3,自引:0,他引:3  
Epoxy resin nanocomposites containing home-made hydrotalcites (HTlc) have been prepared and their properties have been studied and compared with those of montmorillonite (MMT)-type layered silicates-based nanocomposites. Nanofiller dispersion in the polymer matrix has been evaluated by transmission (TEM) electron microscopy and wide angle X-ray diffraction (WAXD), while nanocomposite thermal properties have been studied in detail by thermogravimetric analysis (TGA/DTG) and cone calorimeter tests.The morphological studies have shown that the compatibilisation of the above two type of nanofillers allowed us to obtain nanostructured materials. As far as thermal properties are concerned, nanocomposites based on HTlc are found to decompose, both in air and nitrogen, following a trend similar to that of the neat polymer matrix, while in the case of the nanocomposite based on the organophilic MMT a slight improvement was found in air. Conversely, cone calorimetric tests have demonstrated that only the organophilic hydrotalcite was capable of decreasing the peak of the heat release rate in a relevant way.  相似文献   

15.
A series of homo- and copolymers of acrylonitrile was prepared under radical initiation in DMF solutions. The thermal and flammability characteristics of these polymers were evaluated through thermogravimetric analyses (TGA), differential scanning calorimetry (DSC), and by limiting oxygen index (LOI) measurements. The thermal degradation behaviours of the polymers were assessed primarily with a view to designing comonomers, for acrylonitrile-based polymers, bearing flame retardant moieties. Broadly speaking, in LOI tests acrylic-based comonomers were found to improve fire performance. For instance, the incorporation of methacrylic acid gave a limiting oxygen index value of 26.4 at 30.9 mol% loading, and an intumescent char was produced upon burning.  相似文献   

16.
ABS-g-MAH (maleic anhydride) with different grafting degree, ABS/OMT (organo montmorillonite) and ABS-g-MAH/OMT nanocomposites were prepared via melt blending. The grafting reaction, phase morphology, clay dispersion, thermal properties, dynamic mechanical properties and flammability properties were investigated. FTIR spectra results indicate that maleic anhydride was successfully grafted onto butadiene chains of the ABS backbone in the molten state using dicumyl peroxide as the initiator and styrene as the comonomer and the relative grafting degree increased with increasing loading of MAH. TEM images show the size of the dispersed rubber domains of ABS-g-MAH increased and the dispersion is more uniform than that of neat ABS resin. XRD and TEM results show that intercalated/exfoliated structure formed in ABS-g-MAH/OMT nanocomposites and the rubber phase intercalated into clay layers distributed in both SAN phase and rubber phase. TGA results reveal the intercalated/exfoliated structure of ABS-g-MAH/OMT nanocomposites has better barrier properties and thermal stability than intercalated ones of ABS/OMT nanocomposites. The Tg of ABS-g-MAH/OMT nanocomposites was also higher than that of neat ABS/OMT nanocomposites. The results of cone measurements show that ABS-g-MAH/OMT nanocomposites exhibit significantly reduced flammability when compared to ABS/OMT nanocomposites even at the same clay content. The chars of ABS-g-MAH/OMT nanocomposites were tighter, denser, more integrated and fewer surface microcracks than ABS/OMT residues.  相似文献   

17.
Polystyrene/organo-montmorillonite nanocomposites were prepared via solution blending method, using CHCl3 and CCl4 as solvents. The clay used was organically modified by hexadecyltrimethyl-ammonium bromide (CTAB) at various surfactant loadings. Intercalated nanocomposite structure was obtained using CHCl3 as solvent while exfoliated or partially exfoliated was probably the predominated form in the case of CCl4, as shown by X-ray diffraction measurements. Enhancement in thermal stability and in water barrier properties was observed for PS-nanocomposites compared to that of pristine polymer as indicated by thermogravimetric analysis and water vapor transmission measurements. This increment was more prevalent for nanocomposites prepared with carbon tetrachloride as solvent.  相似文献   

18.
This paper presents a study of polyethersulfone (PES)/halloysite nanotube (HNTs) nanocomposites prepared by melt compounding either through a simple extrusion process or via a water-assisted extrusion procedure. Scanning and transmission electron microscopy techniques are combined with rheological measurements to assess the influence of polymer end groups (–Cl or –OH) and water injection on the HNTs dispersion state. A morphological transition form microcomposite to nanocomposite is achieved when replacing –Cl chain ends of PES by –OH groups, especially when water is injected during processing. By a combination of Soxhlet extraction and thermogravimetric analysis, we show that some PES(OH) chains are covalently bonded onto the aluminosilicate surface during extrusion. A mechanism describing the physico-chemical action of water is presented. The best system in terms of clay dispersion has been retained to characterize PES-HNTs nanocomposites with respect to their thermo-mechanical, thermal and fire (mass loss calorimetry and UL-94) properties. Dynamic mechanical analysis shows a significant enhancement in the storage modulus of halloysite-based nanocomposites when compared to the unfilled matrix. The improved thermal and thermo-oxidative stability of PES in presence of HNTs is mainly attributed to the labyrinth effect provided by individually dispersed nanotubes, which is reinforced during the decomposition process by the formation of a protective charred ceramic surface layer. The mechanism of action of HNTs for fire retardancy of PES presumably arises from a synergistic effect between physical (i.e. ceramic-like structure formation and mechanical reinforcement of the intumescent char) and chemical (i.e. charring promotion) processes taking place in the condensed phase. According to this study, the straightforward and cost-effective melt compounding route could pave the way for future development of high-performance nanoscale polymeric materials combining enhanced thermal properties and excellent flame retardant behaviour.  相似文献   

19.
While a great variety of high temperature polyimide materials exist, these materials are being subjected to higher and higher use temperatures in oxidative and environmentally aggressive environments. There is a limit to the extent one can take a polyimide before it will oxidize and subsequently suffer property degradation, thermal decomposition, and structural failure. Therefore, we instead sought to use materials which do not oxidize (inorganic materials) to enhance the polyimide composition and perhaps move the properties of the organic polymer more into the realm of ceramics while maintaining polyimide composite weights and processing advantages. In this paper we present results of the combination of inorganic micron sized particles with and without carbon nanofibers to produce a variety of highly inorganic particle filled polyimides. These polyimides were tested for thermal stability and flammability in resin pellet form and as a protective coating for a carbon-fiber composite structure. Our results demonstrate that the resin with inorganic particles exhibited significant reductions in flammability by themselves, but minimal flammability reduction when used as a thin coating to protect a carbon-fiber composite. Further, the gains in thermal stability are limited by the thermal stability of the polyimide matrix, suggesting that more work is needed in measuring the limits of inorganic fillers to improve thermal stability. Still, the results are promising and may yield polyimide systems useful for providing resistance to damage from high heat flux exposures/fire risk scenarios.  相似文献   

20.
Acrylamide (AM) and 2-acrylamido-2-methylpropane sulfonic acid (AMPS-H+) or its sodium salt (AMPS-Na+) were copolymerised by free-radical crosslinking polymerization to obtain poly(AM-co-AMPS-H+) and poly(AM-co-AMPS-Na+) superabsorbent polymers (SAPs). A maximum water absorbency in deionised water of 1200 g g−1 was achieved for poly(AM-co-AMPS-Na+) at a 85% mol of AMPS-Na+. The inclusion of mica at 5-30% (w w−1) into the preparation of poly(AM-co-AMPS-Na+) SAP leads to an intercalated structure, as detected by XRD and TEM analyses. Poly(AM-co-AMPS-Na+)/30% (w w−1) mica SAP nanocomposite showed a tap water absorbency of 593 g g−1 with a better thermal stability, compared to the pure SAP. Cone calorimetric analyses revealed that the wood specimens coated with the prepared poly(AM-co-AMPS-Na+) SAP or its 30% (w w−1) mica nanocomposite provided excellent protection in delaying the ignition time after exposure to an open flame when compared to that observed with the uncoated specimen. The maximum reduction in the peak heat release rate and the greatest extension of time at peak heat release rate were observed with the nanocomposite-coated surface, but the total heat release rate was increased. The delayed burning mechanism is brought by the intercalating structure of mica in the SAP nanocomposites, which provided a better shielding effect against external heat sources, and the capability of the SAP nanocomposite in holding a large amount of water.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号