首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Anatomical adaptation of liana plants includes structural changes in cell walls of different tissues: fibers, vessel elements and tracheids. However, the contribution of parenchyma cells to stem twining in liana plants is mostly unknown. The aim of this investigation is to determine changes in stem parenchyma cell walls that are correlated with the twinning process in liana plants. Parenchyma cell wall structure was studied on the stem cross sections of straight and twisted internodes of monocotyledonous liana Dioscorea balcanica, by different microscopy techniques: light microscopy, scanning electron microscopy, fluorescence detected linear dichroism microscopy and Fourier transform infrared microspectrometry. In addition, chemical analysis of the entire stem internodes was performed using photometric and chromatographic methods. Parenchyma cell walls of twisted D. balcanica internodes are characterized by: lower amounts of cellulose (obtained by FTIR microspectrometry) with different cellulose microfibril orientation (shown by Scanning electron microscopy), but no changes in “cellulose fibril order” (obtained by Differential polarization laser scanning microscopy); lower amounts of xyloglucan, higher amounts of xylan, higher amounts of lignin with modified organization—less condensed lignin (obtained by FTIR microspectrometry). At the same time, chemical analysis of the entire internodes did not show significant differences in lignin content and cell wall bound phenols related to stem twining, except for the presence of diferulate cross-links exclusively in twisted internodes. Our results indicate that adaptations to mechanical strain in D. balcanica stems involve modifications in parenchyma cell wall structure and chemistry, which provide decreased stiffness, higher strength and increased elasticity of twisted internodes.  相似文献   

2.
The non-covalent interaction of acetylated nanocrystalline cellulose (AC-NCC) with polylactic acid (PLA) in a composite blend has been studied at the micron scale by synchrotron Fourier transform infrared (FTIR) microspectroscopy. Microtomed sections of AC-NCC in PLA showed strong, localized carbonyl stretching (νC=O) absorbance characteristic of the cellulose acetylation, and this was observed on the surface of larger aggregated AC-NCC particles. A shift in the νC=O IR absorption peak of AC-NCC in PLA, relative to unblended AC-NCC was observed, which is indicative of an intermolecular interaction between AC-NCC and PLA matrix. Acetylation can therefore potentially improve the performance of the composite by enabling linkages between carbonyl groups, helping to establish a good stress transfer between the fiber and the matrix. This could in turn lead to a material with high yield elastic modulus. This is the first reported chemical imaging of acetylated nanocrystalline cellulose-based composite materials using synchrotron FTIR microspectroscopy.  相似文献   

3.
We report on the detailed analysis of chemical modifications and structural changes in the cellulose and lignin of Populus tremula (a hardwood) and Buxus sempervirens (a softwood), as a result of photodegradation in a Xenon test chamber. The results obtained by means of FTIR spectroscopy indicate that lignin is the most sensitive component to the degradation process for both woods examined. On a structural level, the virtual elimination of the amorphous cellulose was observed for both types of wood. The crystallised cellulose I component, which accounts for the whole crystalline phase, undergoes minor structural changes, this effect being more important in the case of Populus tremula that was less degraded than Buxus Sempervirens.  相似文献   

4.
The influence of antimicrobial activity of two contemporary finishes, specifically a dispersion of colloidal silver (Ag) and 3-(trimethoxysilyl)-propyldimethyloctadecyl ammonium chloride (Si-QAC), on the degree of biodeterioration of 100% cotton (CO) fabric and fabric composed of a mixture of cotton and polyester (CO/PET) was studied. Ag was chosen for the leaching agent, while Si-QAC was used as the bio-barrier-forming agent. The biodeterioration of samples finished with different concentrations of Ag and Si-QAC was analysed from a standard soil burial test after 3, 6 and 12 days of exposure to soil microflora. SEM micrographs revealed intensive biodeterioration of the unfinished cellulose fibres, while the highly biologically resistant polyester fibres remained undamaged. A controlled release of Ag successfully inhibited biodeterioration of the cellulose fibres in the CO and CO/PET fabrics when its concentration reached a lethal, biocidal concentration. Contrary to the effects of Ag, the bio-barrier formation of Si-QAC on CO and CO/PET fabrics was insufficient to protect the cellulose fibres during longer periods of soil burial, irrespective of its concentration. Intensive chemical changes to the cellulose were clearly seen from the FT-IR spectra of all of the samples. The resistance of the polyester component to biodeterioration did not provide any significant protection for the cotton component in CO/PET fabric.  相似文献   

5.
The supermolecular structure of various cellulose fibers modified with crosslinking reagents has been investigated by electron microscopy methods. The density, degree of crystallinity (DC), and length changes in alkaline solutions were measured for the modified celluloses. The samples treated with monofunctional analogs of the crosslinking reagents as well as the fiber preparations containing linear and network polymer were also investigated. Three main problems are suggested for the discussion: (1) the general regularities of the structural changes in cellulose in the process of crosslinking; (2) the specific features of the structural changes, as observed in different cellulose samples; (3) the relation between the degree of modification, the type of modifying reagent, and the structure of the crosslinked cellulose. The characteristic structural changes, i.e., the increase in the thickness of fragments, the specific cogged edges, the increase in the lateral dimensions of structural elements all seem to be most representative in native cellulose fibers and are perfectly well distinguished. Similar changes are found in viscose fibers but are less clearly defined. Crosslinking proceeds rather uniformly through the whole of the fiber cross section. It appeared to be most evident when the cross sections are treated with solvents, or when etched in gaseous discharge. Only in cases when the modification is performed in nonaqueous solutions does the reaction proceed mainly in the peripherial regions of the fiber. In fibers subjected to strong swelling, crosslinking results in a real increase in the lateral dimensions of the microfibrils, with the layer thicknesses remaining the same. As a rule, the modification does not imply significant changes in the fiber surface. The crystallite size decreases in the process of crosslinking. This appears to be peculiar to viscose fibers, especially to those subjected to crosslinking in the swollen state. The degree of crystallinity and density of the fibers decrease sharply, which seems to be especially evident in epichlorohydrin-modified samples. Cellulose structure remains unchanged when linear or network polymer forms in the fiber or when the samples are treated with monofunctional reagents. Changes in properties and structure of cellulose caused by crosslinking are most apparent if elongation of the fibers in alkaline solution before and after the modification is compared.  相似文献   

6.
This paper presents the methodology to generate beams of ions in single quantum states for bimolecular ion-molecule reaction dynamics studies using pulsed field ionization (PFI) of atoms or molecules in high-n Rydberg states produced by vacuum ultraviolet (VUV) synchrotron or laser photoexcitation. Employing the pseudocontinuum high-resolution VUV synchrotron radiation at the Advanced Light Source as the photoionization source, PFI photoions (PFI-PIs) in selected rovibrational states have been generated for ion-molecule reaction studies using a fast-ion gate to pass the PFI-PIs at a fixed delay with respect to the detection of the PFI photoelectrons (PFI-PEs). The fast ion gate provided by a novel interleaved comb wire gate lens is the key for achieving the optimal signal-to-noise ratio in state-selected ion-molecule collision studies using the VUV synchrotron based PFI-PE secondary ion coincidence (PFI-PESICO) method. The most recent development of the VUV laser PFI-PI scheme for state-selected ion-molecule collision studies is also described. Absolute integral cross sections for state-selected H2+ ions ranging from v+ = 0 to 17 in collisions with Ar, Ne, and He at controlled translational energies have been obtained by employing the VUV synchrotron based PFI-PESICO scheme. The comparison between PFI-PESICO cross sections for the H2+(HD+)+Ne and H2+(HD+)+He proton-transfer reactions and theoretical cross sections based on quasiclassical trajectory (QCT) calculations and three-dimensional quantum scattering calculations performed on the most recently available ab initio potential energy surfaces is highlighted. In both reaction systems, quantum scattering resonances enhance the integral cross sections significantly above QCT predictions at low translational and vibrational energies. At higher energies, the agreement between experiment and quasiclassical theory is very good. The profile and magnitude of the kinetic energy dependence of the absolute integral cross sections for the H2+(v+ = 0-2,N+ = 1)+He proton-transfer reaction unambiguously show that the inclusion of Coriolis coupling is important in quantum dynamics scattering calculations of ion-molecule collisions.  相似文献   

7.
《Chemical physics letters》1986,128(2):118-122
The photoelectron branching ratio for the production of the (2a1)−1 state of H2O+ has been measured in the 50–200 eV photon-energy range using synchrotron radiation and magic-angle photoelectron spectroscopy. Partial photoionization cross sections are derived from the measured branching ratios using previously reported absolute photoabsorption cross sections. The results are consistent with earlier measurements from threshold to 60 eV obtained with dipole (e, 2e) spectroscopy.  相似文献   

8.
Polarized FTIR microspectroscopy was used to characterize the orientational distribution in semi-thin cross sections of injection-molded polypropylene and to visualize the flow-lines in the material. Distributions of the degree of crystallinity were also obtained using non-polarized infrared radiation.  相似文献   

9.
Summary. Polarized FTIR microspectroscopy was used to characterize the orientational distribution in semi-thin cross sections of injection-molded polypropylene and to visualize the flow-lines in the material. Distributions of the degree of crystallinity were also obtained using non-polarized infrared radiation.  相似文献   

10.
FTIR imaging of individual cells is still limited by the low signal-to-noise ratio obtained from analysis of such weakly absorbing organic matter when using a Globar IR source. In this study, we used FTIR imaging with a synchrotron radiation source and a focal plane array detector to determine changes in the cellular contents of cryofixed cells after culture for 48 h on Si(3)N(4) substrate. Several spectral differences were observed for cells deprived of glucose compared with control cells: a lower amide I-to-amide II ratio (P < 0.01); a different secondary structure profile of proteins (obtained from amide I spectral region curve fitting), with a significant increase in non-ordered structure components (P < 0.01); and a higher ν(C = C-H)/ν(as)(CH(3)) absorption ratio (P < 0.01), suggesting increased unsaturation of fatty acyl chains. Therefore, our study has shown that FTIR imaging with a synchrotron radiation source enables determination of several spectral changes of individual cells between two experimental conditions, which thus opens the way to cell biology studies with this vibrational spectroscopy technique.  相似文献   

11.
Five isomorphic fluorescent uridine mimics have been subjected to two‐photon (2P) excitation analysis to investigate their potential applicability as non‐perturbing probes for the single‐molecule detection of nucleic acids. We find that small structural differences can cause major changes in the 2P excitation probability, with the 2P cross sections varying by over one order of magnitude. Two of the probes, both thiophene‐modified uridine analogs, have the highest 2P cross sections (3.8 GM and 7.6 GM) reported for nucleobase analogs, using a conventional Ti:sapphire laser for excitation at 690 nm; they also have the lowest emission quantum yields. In contrast, the analogs with the highest reported quantum yields have the lowest 2P cross sections. The structure‐photophysical property relationship presented here is a first step towards the rational design of emissive nucleobase analogs with controlled 2P characteristics. The results demonstrate the potential for major improvements through judicious structural modifications.  相似文献   

12.
The surfaces of poly(methyl methacrylate) (PMMA) films modified by O2H2O and H2O radio-frequency glow discharge plasmas were studied using electron spectroscopy for chemical analysis (ESCA or XPS), low energy ion scattering (LEISS or ISS), Fourier transform IR spectroscopy (FTIR) with attenuated total reflectance (ATR) sampling, and critical surface energy from contact angle measurements. The extent and nature of modification with respect to promotion of a hydrophilic surface compared to the hydrophobic surface of the unmodified PMMA has been probed. Results show drastic decreases in C/O ratio at the near surface, which increases to that of the unmodified PMMA as deeper cross sections are analyzed. In addition peak fitting of ESCA data correlated with FTIR functional group information allows for the qualitative and quantitative analysis of the resulting bonding and structure of the modified layer. From these results combined with the polarity and surface energy differences obtained from contact angle measurements, the structural changes are discussed with respect to plasma reaction mechanisms and differences in the structure of the modified polymer films.  相似文献   

13.
This study was conducted to analyse structural changes through scanning electron microscopy (SEM) and Fourier transform infrared (FTIR) after alkaline pretreatment of wheat straw for optimum steaming period. During the study, 2 mm size of substrate was soaked in 2.5% NaOH for 1 h at room temperature and then autoclaved at 121°C for various steaming time (30, 60, 90 and 120 min). Results revealed that residence time of 90 min at 121°C has strong effect on substrate, achieving a maximum cellulose content of 83%, delignification of 81% and hemicellulose content of 10.5%. Further SEM and FTIR spectroscopy confirmed structural modification caused by alkaline pretreatment in substrate. Maximum saccharification yield of 52.93% was achieved with 0.5% enzyme concentration using 2.5% substrate concentration for 8 h of incubation at 50°C. This result indicates that the above-mentioned pretreatment conditions create accessible areas for enzymatic hydrolysis.  相似文献   

14.
We have performed a coordinated set of experiments to measure the electron impact ionisation and UV photoabsorption cross sections of α- and β-pinene. The adiabatic ionisation energies of α- and β-pinene were derived from experiment and found to be 8.3 and 8.6 eV which compared well with high-level quantum chemical calculations (G3MP2) yielding values of 8.29 and 8.41 eV. Additionally, vertical ionisation energies of 8.62 and 8.96 eV were calculated using an OVGF method. UV photoabsorption cross sections were measured using a high-resolution synchrotron radiation source and electronic states interpreted on the basis of the TD quantum chemical methods.  相似文献   

15.
严佳萍  邵正中  陈新  黄郁芳 《化学进展》2008,20(11):1768-1778
同步辐射作为一种新型红外光源,具有光谱宽、亮度高、分辨率高的特性,在生命科学领域具有广泛的应用。随着同步红外显微镜成像技术的不断发展,同步辐射红外光谱技术可以在原位探测亚细胞级别的生物化学变化,并保留细胞的生命特征。通过对蛋白质、核酸、磷脂等成分的定性和定量分析,可以了解骨细胞、神经细胞的病变,癌变细胞的活动情况以及植物细胞的营养状况等。同时,同步辐射红外光谱技术的应用范围正在不断扩展,其在药物释放的检测和生物化学过程的监控等方面也具有相当的应用前景。此外,在生物分子的分子间振动能级所处的远红外区,同步辐射红外光谱相比于常规红外光谱具有较高的信噪比。  相似文献   

16.
The cross sections of outer core levels and the valence bands of Pb-and Pt-phthalocyanine have been studied using monochromatized synchrotron radiation in the photon energy range hv = 20-260 eV. The hv dependence of the Pb 5d and Pt 4f partial cross sections is discussed in a one-electron model. Various mechanisms for the observed broadening of the outer metal core levels in the phthalocyanines compared to the pure metals considered.  相似文献   

17.
Reinforcing of cellulose nanofibril (CNF) films by partial dissolution with N-methylmorpholine-N-oxide (NMMO) was investigated. The method investigated is composed of impregnation of CNF film with liquid solution of NMMO followed by dry heat activation. The heat activation of the impregnated film was carried out using a heated calendering nip, which enabled simultaneous heating and compression. The partial dissolution of cellulose by NMMO caused a significant increase in the transparency of CNF film due to the decrease of film porosity and increased surface smoothness. The dry strength of the reinforced film was increased from 122 up to 195 MPa. Furthermore, the wet strength of the reinforced film was up to 70% greater than the dry strength of pure CNF film. The changes in the fibrillar structure were investigated with topographical imaging (SEM and AFM) and spectroscopically using NMR and FTIR. No significant changes in the fibril structure or cellulose morphology were observed. Moreover, the treated film resisted significant water pressure, highlighting CNF film’s permanent water resistance. The partial dissolution process with NMMO was also capable of reinforcing a CNF composite film with macro scale structural elements (lyocell short-cut fibres). The strategy investigated is a robust and fast method to improve the mechanical properties of fibrillary cellulose films, allowing them utilization in applications where improved water resistance and fully cellulosic character are required properties.  相似文献   

18.
 Results from measurements and calculations of relative L- and M-shell ionization cross sections by electron impact are presented. Measurements were performed for elements Te, Au and Bi on an electron microprobe with specimens consisting of extremely thin films of the studied element deposited on thin, self-supporting, carbon layers. The relative variation of the ionization cross section was obtained by counting the number of characteristic X-rays from the considered element and shell, for varying incident electron energies, from the ionization energy up to 40 keV. Measured data were corrected to account for the energy-dependent spread of the electron beam within the active film and for the ionization due to the electrons backscattered from the carbon layer, using Monte Carlo simulation. Cross sections were evaluated in the Born approximation using an optical-data model with numerically evaluated dipole photoelectric cross sections. Calculated ionization cross section were converted to vacancy production cross sections, which can be directly compared with our experimental data.  相似文献   

19.
Polyurethane waterborne synthesis was performed using a two-step method, commonly referred to as a prepolymer method. Nanocomposites based on waterborne polyurethane and cellulose nanocrystals were prepared by the prepolymer method by altering the mode and step in which the nanofillers were incorporated during the polyurethane formation. The morphology, structural, thermal, and mechanical properties of the resulting nanocomposite films were evaluated by Fourier transform infrared spectroscopy (FTIR), small angle X-ray scattering (SAXS), scanning electron microscopy (SEM), and tensile tests. FTIR results indicated that the degree of interaction between the nanofillers and the WPU through hydrogen bonds could be controlled by the method of cellulose nanocrystal incorporation. Data obtained from SAXS experiments showed that the cellulose nanocrystals as well as the step of the reaction in which they are added influenced the morphology of the polyurethane. The reinforcing effect of CNCs on the nanocomposites depends on their morphology.  相似文献   

20.
We have studied the cellulose supramolecular structure in pulps obtainedby steam explosion of aspen wood. The pulps were bleached with hydrogenperoxidein an OQP-sequence and characterised by size exclusion chromatography and13C cross polarisation magic angle spinning (CP/MAS)NMR-spectroscopy. With CP/MAS-NMR-spectroscopy and chemometrics we were able toseparate the supramolecular structural changes taking place during steamexplosion into two independent processes. One process was related to the extentof processing and showed degradation and dissolution of cellulose,hemicelluloseand lignin accompanied by an increase in cellulose content. The second processwas displayed by pulps having molecular weights below approximately 100000 andwas interpreted as showing the removal of dislocations and an increase incrystalline and/or paracrystalline cellulose in the cellulose fibrils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号