首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The anodic stripping voltammetry at a carbon paste electrode modified with thiol terminated self-assembled monolayer on mesoporous silica (SH-SAMMS) provides a new sensor for simultaneous detection of lead (Pb2+) and mercury (Hg2+) in aqueous solutions. The overall analysis involved a two-step procedure: an accumulation step at open circuit, followed by medium exchange to a pure electrolyte solution for the stripping analysis. Factors affecting the performance of the SH-SAMMS modified electrodes were investigated, including electrode activation and regeneration, electrode composition, preconcentration time, electrolysis time, and composition of electrolysis and stripping media. The most sensitive and reliable electrode contained 20% SH-SAMMS and 80% carbon paste. The optimal operating conditions were a sequence with a 2 min preconcentration period, then a 60 s electrolysis period of the preconcentrated species in 0.2 M nitric acid, followed by square wave anodic stripping voltammetry from -1.0 V to 0.6 V in 0.2 M nitric acid. The areas of the peak responses were linear with respect to metal ion concentrations in the ranges of 10-1500 ppb Pb2+ and 20-1600 ppb Hg2+. The detection limits for Pb2+ and Hg2+ were 0.5 ppb Pb2+ and 3 ppb Hg2+ after a 20 min preconcentration period.  相似文献   

2.
A new sensor was developed for simultaneous detection of cadmium (Cd2+), copper (Cu2+), and lead (Pb2+), based on the voltammetric response at a carbon paste electrode modified with carbamoylphosphonic acid (acetamide phosphonic acid) self-assembled monolayer (SAM) on mesoporous silica (Ac-Phos SAMMS). The adsorptive stripping voltammetry (AdSV) technique involves preconcentration of the metal ions onto Ac-Phos SAMMS under an open circuit, then electrolysis of the preconcentrated species, followed by a square wave potential sweep towards positive values. Factors affecting the preconcentration process were investigated. The voltammetric responses increased linearly with the preconcentration time from 1 to 30 min or with metal ion concentrations ranging from 10 to 200 ppb. The responses also evolved in the same fashion as adsorption isotherm in the pH range of 2-6. The metal detection limits were 10 ppb after 2 min preconcentration and improved to 0.5 ppb after 20 min preconcentration.  相似文献   

3.
《Electroanalysis》2004,16(10):870-873
This study reports a new approach for developing a uranium electrochemical sensor that is mercury‐free, solid‐state, and has less chance for ligand depletion than existing sensors. A carbon‐paste electrode modified with carbamoylphosphonic acid self‐assembled monolayer on mesoporous silica was developed for uranium detection based on an adsorptive square‐wave stripping votammetry technique. Voltammetric responses for uranium detection are reported as a function of pH, preconcentration time, and aqueous phase uranium concentration. The uranium detection limit is 25 ppb after 5 minutes preconcentration and improved to 1 ppb after 20 minutes preconcentration. The relative standard deviations are normally less than 5%.  相似文献   

4.
2‐(4,8,11‐Triscarbamoylmethyl‐1,4,8,11‐tetraazacyclotetradec‐1‐yl)acetamide (TETAM) derivatives bearing 1, 2, or 4 silylated arms have been synthesized and grafted to the surface of silica gel and ordered mesoporous silica samples. The resulting organic‐inorganic hybrids have been incorporated into carbon paste electrodes and applied to the preconcentration electroanalysis of Pb(II). The attractive recognition properties of these cyclam derivatives functionalized with amide pendent groups toward Pb(II) species and the highly porous structure of the adsorbents can be exploited for the selective and sensitive detection of the target analyte. Various parameters affecting the preconcentration and detection steps have been discussed with respect to the composition and pH of both accumulation and detection media, the nature of the adsorbent (number of silylated groups linking the macrocycle to silica, texture of materials), the accumulation time, and the presence of interfering cations. Under optimal conditions and for 2 min accumulation at open‐circuit, the voltammetric response increased linearly with the Pb(II) concentration in a range extending from 2×10?7 to 10?5 M, while a longer accumulation time of 15 min afforded a linear calibration curve between 10?8 and 10?7 M with a detection limit of 2.7×10?9 M which is well below the European regulatory limit of lead in consumption water.  相似文献   

5.
A sensitive mercury‐free lead (Pb2+) sensor has been proposed based on an ordered mesoporous carbon and Nafion composite film (OMC/Nafion) coated glassy carbon electrode. The analysis of Pb2+ using anodic stripping voltammetry (ASV) includes two steps. Pb2+ ions are firstly reduced and deposited on the electrode surface in a Pb2+ solution (10 mL) during a preconcentration step biased at ?1.0 V, followed by a measurement step by differential pulse voltammetry (DPV) within the potential range of ?0.8 to ?0.3 V (scan rate: 20 mV/s, frequency: 20 Hz, amplitude: 50 mV, pulse width: 50 ms). Linear calibration curve was found to be from 20 nM to 2 μM for Pb2+ with a sensitivity of 17.4±1.38 μA/μM after a 5‐min of preconcentration. The detection limit was estimated to be around 4.60±0.12 nM at the signal to noise ratio of 3. Reproducibility (RSD%) was found to be 3.0% for a single sensor with eight measurements and 4.3% for five sensors prepared with identical procedures. The practical application of the proposed lead sensor was verified by determination of trace level of Pb2+ in tap water sample.  相似文献   

6.
The renaissance of nuclear energy promotes increasing basic research on the separation and enrichment of nuclear fuel associated radionuclides. Herein, we report the first study for developing mesoporous silica functionalized with phosphonate (NP10) as a sorbent for U(VI) sorption from aqueous solution. The mesoporous silica was synthesized by co-condensation of diethylphosphatoethyltriethoxysilane (DPTS) and tetraethoxysilane (TEOS), using cationic surfactant cetyltrimethylammonium bromide (CTAB) as the template. The synthesized silica nanoparticles were observed to possess a mesoporous structure with a uniform pore diameter of 2.7 nm, and to have good stability and high efficiency for U(VI) sorption from aqueous solution. A maximum sorption capacity of 303 mg g(-1) and fast equilibrium time of 30 min were achieved under near neutral conditions at room temperature. The adsorbed U(VI) can be easily desorbed by using 0.1 mol L(-1) HNO(3), and the reclaimed mesoporous silica can be reused with no decrease of sorption capacity. In addition, the preconcentration of U(VI) from a 100 mL aqueous solution using the functionalized mesoporous silica was also studied. The preconcentration factor was found to be as high as 100, suggesting the vast opportunities of this kind of mesoporous silica for the solid-phase extraction and enrichment of U(VI).  相似文献   

7.
The current work proposed a new green procedure that is not sophisticated to recognize and determine the Al(III) ions in multiple water samples. The suggested method was conducted based upon the direct immobilization of aurintricarboxylic acid reagent into the mesoporous silica nanospheres to shape a unique and novel solid sensor. Al(III)-ATA red-complex has been formed at pH 4.0 and spectrophotometrically measured at 525 nm. Moreover, the complexation was reversible, and the ATA sensor retained his functionality even after six-time reuse/cycles using EDTA as eluent. Univariate and multivariate (partial least squares 1, PLS-1) calibration techniques were utilized for calculating the figures of merit for the determination of the Al(III) ions. The obtained calibration curve was linear from 2.0 to 70 ppb Al(III) ions concentration. The developed method has a detection limit of 3.5 ppb. In addition, the ATA sensor showed high adsorption capacity value (118.53 mg/g) which gives it a great advantage to be applicable as nanocollector for trapping Al(III) ions. The novel ATA sensor showed high degree of selectivity, sensitivity, reproducibility, and stability. The current study explores the effectiveness of the ATA sensor for the first time to produce a green solid sensor to determine the trace amount of Al(III) in diverse water types; tap, mineral, river, well, and sea water.  相似文献   

8.
A fully automated portable analyzer for toxic metal ion detection based on a combination of a nanostructured electrochemical sensor and a sequential flow injection system has been developed in this work. The sensor was fabricated from a carbon paste electrode modified with acetamide phosphonic acid self-assembled monolayer on mesoporous silica (Ac-Phos SAMMS) which was embedded in a very small wall-jet (flow-onto) electrochemical cell. The electrode is solid-state and mercury-free. Samples and reagents were injected into the system and flowed through the electrochemical cell by a user programmable sequential flow technique which required minimal volume of samples and reagents and allowed the automation of the analyzer operation. The portable analyzer was evaluated for lead (Pb) detection due to the excellent binding affinity between Pb and the functional groups of Ac-Phos SAMMS as well as the great concern for Pb toxicity. Linear calibration curve was obtained in a low concentration range (1-25 ppb of Pb(II)). The reproducibility was excellent; the percent relative standard deviation was 2.5 for seven consecutive measurements of 10 ppb of Pb(II) solution. Excess concentrations of Ca, Ni, Co, Zn, and Mn ions in the solutions did not interfere with detection of Pb, due to the specificity and the large number of the functional groups on the electrode surface. The electrode was reliable for at least 90 measurements over 5 days. This work is an important milestone in the development of the next-generation metal ion analyzers that are portable, fully automated, and remotely controllable.  相似文献   

9.
Urine is universally recognized as one of the best non-invasive matrices for biomonitoring exposure to a broad range of xenobiotics, including toxic metals. Detection of metal ions in urine has been problematic due to the protein competition and electrode fouling. For direct, simple, and field-deployable monitoring of urinary Pb, electrochemical sensors employing superparamagnetic iron oxide (Fe3O4) nanoparticles with a surface functionalization of dimercaptosuccinic acid (DMSA) has been developed. The metal detection involves rapid collection of dispersed metal-bound nanoparticles from a sample solution at a magnetic or electromagnetic electrode, followed by the stripping voltammetry of the metal in acidic medium. The sensors were evaluated as a function of solution pH, the binding affinity of Pb to DMSA-Fe3O4, the ratio of nanoparticles per sample volume, preconcentration time, and Pb concentrations. The effect of binding competitions between the DMSA-Fe3O4 and urine constituents for Pb on the sensor responses was studied. After 90 s of preconcentration in samples containing 25 vol.% of rat urine and 0.1 g L(-1) of DMSA-Fe3O4, the sensor could detect background level of Pb (0.5 ppb) and yielded linear responses from 0 to 50 ppb of Pb, excellent reproducibility (%RSD of 5.3 for seven measurements of 30 ppb Pb), and Pb concentrations comparable to those measured by ICP-MS. The sensor could also simultaneously detect background levels (<1 ppb) of Cd, Pb, Cu, and Ag in river and seawater.  相似文献   

10.
Luminescent and mesoporous Eu(3+)/Tb(3+) doped calcium silicate microspheres (LMCS) were synthesized by using mesoporous silica spheres as the templates. The LMCS and drug-loaded samples were characterized by means of X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR), N(2) adsorption/desorption, and photoluminescence (PL) spectra. The results reveal that the LMCS have uniform spherical morphology with a diameter around 400 nm and the mesopore size of 6 nm. The prepared samples exhibit little cytotoxicity at concentrations below 5 mg mL(-1) via MTT assay. In addition, drug storage/release properties of the LMCS were demonstrated for ibuprofen (IBU). The obtained LMCS can be used to encapsulate drugs and release them. Under excitation by UV light, the IBU-loaded samples still show the characteristic (5)D(0)-(7)F(1-3) emission lines of Eu(3+) and the characteristic (5)D(4)-(7)F(3-6) emission lines of Tb(3+). The PL intensity of Eu(3+) in the drug carrier system increases with the cumulative released amount of IBU, making the drug release able to be tracked or monitored by the change of luminescence of Eu(3+). The LMCS reported here with mesoporous structure, good biocompatibility and luminescent property can be a promising drug delivery carrier.  相似文献   

11.
Europium (III) (Eu(3+))-doped nanoporous silica spheres were synthesized, and the states of Eu(3+) ions in the silica framework structure were investigated. The ordered nanopores were preserved with the doping at the Eu(3+) molar concentration to Si up to 10 mol%, and the O-Si-O and Si-OH groups in the structures were clearly rearranged with the doping, indicating the interaction of Eu(3+) with the O atoms. The significant morphological changes in the spheres were observed with the doping. The photoluminescence spectral shapes due to the transitions of (5)D(0)-(7)F(1) and (5)D(0)-(7)F(2) were indicative of the presence of the Eu(3+) in an environment of a low symmetry. It was found that the Eu(3+) was located inside the silica framework to electrostatically interact with the environmental O atoms, which would prevent the aggregation among Eu(3+) ions to show the efficient luminescence. Therefore, the interactions between the Eu(3+) ions and silica framework structures in the spheres were successfully clarified.  相似文献   

12.
The clay mineral montmorillonite has been tested as modifier for the carbon paste electrode with a novel electrode modification technique. The differential pulse voltammetric determination of copper(II) by means of this modified carbon paste electrode has been studied. A detection limit of 4x10(-8) mol/l has been achieved after 10 min preconcentration under open circuit conditions with subsequent anodic stripping voltammetry. The calibration curve for Cu(II) is linear in the range of 4x10(-8)-8x10(-7) mol/l. Pb interferes in a 10-fold molar and Cd and Hg in a 100-fold molar excess. The interference by humic ligands is significant.  相似文献   

13.
We chose dipicolinic acid as a tridentate chelating unit featuring ONO donors to react with lanthanide(III) ions to yield tight and protective N(3)O(6) environments around the lanthanide(III) ions. We immobilized the lanthanide(III)-dipicolinic acid complexes on colloidal mesoporous silica with diameter smaller than 100 nm by a covalent bond grafting technique and obtained nearly monodisperse luminescent Eu-dpa-Si and Tb-dpa-Si functionalized hybrid mesoporous silica nanomaterials. These hybrid nanomaterials were characterized by powder X-ray diffraction, scanning electron microscopy, transmission electron microscopy, thermogravimetric analysis, nitrogen adsorption-desorption, and photoluminescence spectroscopic techniques. The hybrid mesoporous silica nanoparticles exhibit intense emission lines upon UV-light irradiation, owing to the effective intramolecular energy transfer from the chromophore to the central lanthanide Eu(3+) and Tb(3+) ions. Furthermore, the functionalized nanomaterials can be turned to white light materials after annealing at high temperature.  相似文献   

14.
Electrochemical sensors have great potential for environmental monitoring of toxic metal ions in waters due to their portability, field-deployability and excellent detection limits. However, electrochemical sensors employing mercury-free approaches typically suffer from binding competition for metal ions and fouling by organic substances and surfactants in natural waters, making sample pretreatments such as wet ashing necessary. In this work, we have developed mercury-free sensors by coating a composite of thiol self-assembled monolayers on mesoporous supports (SH-SAMMS™) and Nafion on glassy-carbon electrodes. With the combined benefit of SH-SAMMS™ as an outstanding metal preconcentrator and Nafion as an antifouling binder, the sensors could detect 0.5 ppb of Pb and 2.5 ppb of Cd in river water, Hanford groundwater, and seawater with a minimal amount of preconcentration time (few minutes) and without any sample pretreatment. The sensor could also detect 2.5 ppb of Cd, Pb, and Cu simultaneously. The electrodes have long service times and excellent single and inter-electrode reproducibility (5% R.S.D. after 8 consecutive measurements). Unlike SAMMS™-carbon paste electrodes, the SAMMS™-Nafion electrodes were not fouled in samples containing albumin and successfully detected Cd in human urine. Other potentially confounding factors affecting metal detection at SAMMS™-Nafion electrodes were studied, including pH effect, transport resistance of metal ions, and detection interference. With the ability to reliably detect low metal concentration ranges without sample pretreatment and fouling, SAMMS™-Nafion composite sensors have the potential to become the next-generation metal analyzers for environmental and bio-monitoring of toxic metals.  相似文献   

15.
Screen-printed carbon electrodes (SPCEs), without chemical modification, have been investigated as disposable sensors for the measurement of trace levels of Cu(2+). Cyclic voltammetry was employed to elucidate the electrochemical behaviour of Cu(2+) at these electrodes in a variety of supporting electrolytes. For all of the electrolytes studied the anodic peaks, obtained on the reverse scans, showed that the Cu(2+) had been deposited as a thin layer on the surface of the SPCE. The anodic peak of greatest magnitude was obtained in 0.1 M malonic acid. The possibility of determining Cu(2+) at trace levels using this medium was examined by differential pulse anodic stripping voltammetry (DPASV). The effect of Bi(3+), Cd(2+), Fe(3+), Hg(2)(2+), Pb(2+), Sb(3+) and Zn(2+) on the Cu stripping peak was examined and under the conditions employed, only Hg(2)(2+) was found to significantly effect the response gained. The sensors were evaluated by carrying out Cu(2+) determinations on spiked and unspiked serum and water samples. The mean recovery was found in all cases to be >90% and the performance characteristics indicated the method holds promise for trace Cu(2+) levels by employment of Hg-free SPCEs using DPASV.  相似文献   

16.
YF(3) and YF(3):Eu(3+) mesoporous hexagonal nanocrystals were successfully synthesized via a simple hydrothermal process based on the in situ assembly of the as-synthesized YF(3) and YF(3):Eu(3+) nanoparticles. The well defined mesoporous nanostructures are formed by phenanthroline assisted assembly of ~20 nm nanoparticles, and 2-4 nm pores are contained as indicated by N(2) adsorption-desorption studies. The obtained YF(3):Eu(3+) mesoporous hexagonal nanoplates show a significant photoluminescence intensity enhancement compared with other shaped YF(3):Eu(3+) nanocrystals.  相似文献   

17.
A review (350 references) is given to the interest of mesoporous materials for designing electrochemical sensors. After a brief summary of the implication of template‐based ordered mesoporous materials in electrochemical science, the various types of inorganic and organic‐inorganic hybrid mesostructures used to date in electroanalysis and the corresponding electrode configurations are described. The various sensor applications are then discussed on the basis of comprehensive tables and some representative illustrations. The main detection schemes developed in the field are (volt)amperometric sensing subsequent to preconcentration and electrocatalytic detection.  相似文献   

18.
Two novel silica based lanthanide complexes (Tb(a)(2) and Eu(a)(2)) were encapsulated into poly(acrylic acid) host. Both Tb(III) and Eu(III) containing hydrogels have typical and easily distinguished narrow line emissions occurring in the green and red region respectively. Particularly, the excitation wavelength for Eu complex can be extended into nearly visible light range (λ(ex) = 395 nm). Interestingly, we discover that these target materials not only exhibit selective emission response towards HSO(4)(-) (detection limit 10(-5) M) compared with CH(3)COO(-), F(-), Cl(-), Br(-) and I(-) but also give unique quenching to Cu(2+) (detection limit 10(-5) M) (tested cations: Cu(2+), Pd(2+), Cd(2+), Co(2+) and Mn(2+)). More importantly, this kind of materials can be recycled more than 10 times.  相似文献   

19.
An electroanalytical method has been developed for the determination of methidathion by squarewave voltammetry on a Nafion®-coated glassy carbon electrode in aqueous solutions with 0.05 M acetate buffer as a supporting electrolyte. The best voltammetric conditions were found to be pH 4.0, a preconcentration potential of 0.45 V, and a preconcentration time of 60 s. The experimental parameters, such as pH, film thickness, preconcentration potential, preconcentration time, and square-wave voltammetric parameters, were optimized. Using this method, the calibration curve is linear in the range 5 × 10?8?7 × 10?7 M with a detection limit (S/N = 3) of 30 nM.  相似文献   

20.
A facile, economic and eco-friendly colorimetric sensor for Cu(2+) using dopamine/silver nanoparticles was developed. The sensor shows excellent sensitivity and selectivity toward Cu(2+) in the range of 3.2-512 ppb and can be applied for Cu(2+) detection in tap water.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号