首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
傅钢  吕鑫  徐昕  万惠霖 《分子催化》2001,15(6):484-486
应用UBI-QEP方法, 估算了CO2-在金属表面的吸附热, 并计算了CO2在Cu(111)、Pd(111)、Fe(111)、Ni(111)表面的各种反应途径的活化能垒. 结果表明, CO2-在4种过渡金属表面相对的稳定性和CO2解离吸附的活性顺序一致,均为Fe>Ni>Cu>Pd. 说明CO2-可能是CO2解离吸附的关键中间体. 在Cu、Pd、Ni表面上, CO2解离吸附的最终产物是CO,而在Fe表面其最终会解离成C和O. 在Cu、Fe、Ni表面, CO2加氢活化是一种有效模式, 而在Pd上则不容易进行. 在Cu和Pd表面,碳酸盐物种也可能是CO2活化的重要中间体.  相似文献   

2.
甲醇在Pt-Mo(111)/C表面上的吸附   总被引:1,自引:0,他引:1  
采用密度泛函理论和周期平板模型相结合的方法, 对CH3OH分子在Pt-Mo(111)/C表面的顶位、穴位和桥位共计9种吸附模型进行了构型优化、能量计算和频率分析, 结果表明top-Pt位是较有利的吸附位. Mo掺杂后价带与导带位置均有不同程度的降低, 电子结构的变化使得Pt-Mo(111)/C的催化活性提高. 并且在考虑催化剂抗中毒性能时发现: CO在Pt(111)/C面上的吸附能比甲醇吸附能要高, CO在Pt-Mo(111)/C上的吸附能比甲醇的要低, 说明CO在Pt(111)/C面上的吸附会阻碍甲醇的吸附, 并影响催化过程的进行, 而Pt-Mo(111)/C的抗CO中毒化能力增强, 是催化氧化甲醇较好的催化剂.  相似文献   

3.
采用广义梯度近似(GGA)密度泛函理论(DFT)的PW91方法结合周期性模型, 在DNP基组下, 利用Dmol3模块研究了CO和H2在真空和液体石蜡环境下在Cu(111)表面上不同位置的吸附. 计算结果表明, 溶剂化效应对H2和CO的吸附结构参数和吸附能的影响非常显著. 在液体石蜡环境下, H2平行吸附在Cu(111)表面是解离吸附, 而CO 和H2在两种环境下的垂直吸附都是非解离吸附. 相比真空环境吸附, 在液体石蜡环境中, Cu(111)吸附CO时, 溶剂化效应能够提高CO吸附的稳定性, 同时有利于CO的活化. 在真空中, H2只能以垂直方式或接近垂直方式吸附在Cu(111)表面. 当Cu(111)顶位垂直吸附H2, 相比真空环境吸附, 溶剂化效应能够提高H2吸附的稳定性, 但对H2的活化没有明显影响. Cu(111)表面的桥位或三重穴位(hcp和fcc)垂直吸附H2时, 溶剂化效应能明显提高H2的活化程度, 但降低H2的吸附稳定性; 在液体石蜡中, 当H2平行Cu(111)表面吸附时, 溶剂化效应使H—H键断裂, 一个H原子吸附在fcc位, 另一个吸附在hcp位.  相似文献   

4.
采用密度泛函理论方法,运用平板模型对噻吩分子在PtNi2/Ni(111)表面的水平吸附进行了结构优化和能量计算.结果表明:bridge-hollow-1位的吸附最稳定,但是bridge位吸附对噻吩的影响最大.噻吩吸附在表面上时,S原子向上翘起,C原子与表面Ni原子的作用比与Pt原子紧密,表面原子与噻吩的匹配程度决定了吸附的强度和吸附后S—C键和C—C键的活泼性.噻吩以bridge-hollow-1和bridge位吸附时分子与表面之间的电子给予与反馈最多,分子最活泼,而且除了C(1)—S键以外,环上C(1)—C(2)键活化程度也较好,而bridgehollow-2位吸附后噻吩分子中C(2)—C(2)键比较容易发生断裂.  相似文献   

5.
采用第一性原理方法和平板模型对CO分子在TiC(001)表面的吸附构型和电子结构进行了详细研究. 结果表明, CO分子倾向于采用C端吸附在表层Ti原子上方. 对于该吸附方式, 计算得到的吸附能、CO各电子态所处能级位置以及C—O键伸缩振动频率的红移值均与实验观测结果相吻合. 由能带结构和Mvlliken布居分析结果可知, 当采用C端吸附时, CO的5σ和2π鄢态受到底物影响最为显著, 尤其是C端的桥位吸附方式. 此外, 还进一步对底物表面态在CO吸附过程中的作用进行了探讨.  相似文献   

6.
甲醇在Pt-Fe(111)/C表面吸附的理论研究   总被引:1,自引:0,他引:1  
王译伟  李来才  田安民 《化学学报》2008,66(22):2457-2461
采用密度泛函理论和周期平板模型相结合的方法, 对CH3OH分子在Pt-Fe(111)/C表面top, fcc, hcp和bridge位的吸附模型进行了构型优化、能量计算, 结果表明bridge位是较有利的吸附位. 掺杂后费米能级的位置发生了右移, 价带和导带均增宽, 极利于电子-空穴的迁移, 这对提高催化活性是非常有利的. 考察抗中毒性发现: CO在Pt(111)/C面上的吸附能比甲醇吸附能要高, CO在Pt-Fe(111)/C的吸附能比甲醇吸附能要低, 可说明CO在Pt(111)/C面上有中毒效应, 而Pt-Fe(111)/C的抗CO中毒能力增强, 是催化氧化甲醇良好的催化剂.  相似文献   

7.
采用基于第一性原理的密度泛函理论结合周期平板模型方法, 研究了甲醇分子在FeS2(100)完整表面的吸附与解离. 通过比较不同吸附位置的吸附能和构型参数发现: 表面Fe位为有利吸附位, 甲醇分子通过氧原子吸附在表面Fe位, 吸附后甲醇分子中的C―O键和O―H键都有伸长, 振动频率发生红移; 甲醇分子易于解离成甲氧基CH3O和H, 表面Fe位仍然是二者有利吸附位. 通过计算得出甲醇在FeS2(100)表面解离吸附的可能机理: 甲醇分子首先发生O―H键的断裂, 生成甲氧基中间体, 继而甲氧基C―H键断裂, 得到最后产物HCHO和H2.  相似文献   

8.
采用密度泛函理论计算了巴豆醛4种构型的稳定性,并选取最优构型进一步研究了其Au(111)面上的吸附及选择性加氢机理.计算结果表明,具有E-(s)-trans构型的巴豆醛稳定性最高.当巴豆醛通过C O吸附于Au(111)面的顶位时,该构型吸附能最大,吸附模型最稳定;巴豆醛向Au(111)表面转移电子0.045e,且其p轨道与金属表面的d轨道发生较强相互作用,使得巴豆醛的键级减弱.此外,通过分析各基元反应的活化能、反应热以及构型变化可知,巴豆醛在Au(111)面上按照2,1-加成机理(部分加氢机理)生成巴豆醇的可能性最大,且降低温度有利于反应转化率的提高.  相似文献   

9.
任云鹏  鲁玉祥  娄琦 《物理化学学报》2007,23(11):1728-1732
用密度泛函理论(DFT)中的广义梯度近似(GGA)方法对CO-Pt低指数面吸附体系进行了结构优化, 并对吸附体系的吸附热、C—O键和C—Pt键的键长、布居数分析、电子态密度进行了研究. 计算结果表明, 在0.25 ML(monolayer)的覆盖率下, CO最容易在Pt(100)晶面的桥位、Pt(110)晶面的短桥位、Pt(111)晶面的hcp三重位吸附, 吸附热分别达到了2.11、2.37、1.96 eV; CO在吸附成键过程中伴有电子在CO分子和Pt之间的转移. 吸附后, C—O键被削弱, 键长变长, 金属内部的作用亦被削弱, 其表层Pt 原子的布居数明显降低; 态密度分析表明, CO在吸附过程中, 其4σ、1π、5σ、2π轨道均参与成键.  相似文献   

10.
MgO缺陷和不规则表面吸附CO的能带和电子结构研究   总被引:1,自引:0,他引:1  
采用从头算程序优化MgO表面三种不同配位位置吸附CO构型,并用扩展休克尔紧束缚(EHT)晶体轨道方法对MgO的缺陷和不规则表面吸附CO的可能构型进行能带计算,讨论了能带结构及组成,不同构型吸附前后能带和成键性质的变化,以及吸附前后的电荷转移和吸附键的变化规律。研究结果发现,CO的C端更有利于在MgO固体表面的吸附,具有氧缺陷结构的MgO更有利于吸附分解CO。  相似文献   

11.
采用密度泛函理论(DFT)的B3LYP方法,以原子簇Rh13(9,4)为模拟表面,在6-31G(d,p)与Lanl2dz基组水平上,对甲氧基在Rh(111)表面的四种吸附位置(fcc、hcp、top、bridge)的吸附模型进行了几何优化、能量计算、Mulliken电荷布局分析以及前线轨道的计算。结果表明,当甲氧基通过氧与金属表面相互作用时,在bridge位的吸附能最大,吸附体系最稳定,在top位转移的电子数最多;吸附于Rh(111)面的过程中C—O键被活化,C—O键的振动频率发生红移。  相似文献   

12.
CO在CeO2(111)表面的吸附与氧化   总被引:2,自引:0,他引:2  
采用密度泛函理论计算了CO在CeO2(111)表面的吸附与氧化反应行为. 结果表明, O2在洁净的CeO2(111)表面为弱物理吸附, 而在氧空位表面是强化学吸附, 且O2分子活化程度较大, O—O键长为0.143 nm. CO在CeO2(111)表面吸附行为的研究表明, CO在洁净表面及氧空位表面上为物理吸附, 吸附能均小于0.42 eV; 当表面氧空位吸附O2后, CO可吸附生成二齿碳酸盐中间体或直接生成CO2, 与原位红外光谱结果相一致. 表面碳酸盐物种脱附生成CO2的能垒仅为0.28 eV. 计算结果表明, 当CeO2表面存在氧空位时, Hubbard参数U对CO吸附能有一定的影响. CeO2载体在氧化反应中可能的催化作用为, 在氧气氛下, CeO2表面氧空位吸附O2分子, 形成活性氧物种, 参与CO催化氧化反应.  相似文献   

13.
在全电子相对论BVP86/DNP水平下对CO在Au55,Ag55和Cu55团簇上的吸附进行了比较研究,并考察了电荷对吸附的影响.计算结果表明,CO在Au55团簇上吸附能最大,其次为Cu55团簇,最弱的为Ag55团簇.团簇电荷对C—O键活化和CO与团簇表面原子成键影响较小.金团簇的电荷对吸附能影响较大,而银和铜团簇的电荷对吸附能影响较小.CO吸附到团簇上导致团簇上电子向CO转移.C—O键活化强度与吸附位置密切相关,其中孔位吸附导致C—O键活化程度最大,最弱的为顶位吸附.CO在金团簇上吸附具有较好选择性,而在银和铜团簇上吸附无选择性.  相似文献   

14.
以原子簇Zn_4O_4模型,用量子化学的从头算方法与补偿方法(counterpoise )相结合研究了一氧化碳在氧化锌极化表面Zn-ZnO(0001)和O-ZnO(000-1)及在非极 化(10-10)表面的吸附态和吸附键能。研究表明,无论锌离子以何种方式出现在 晶体表面,锌离子都是较强的活化吸附中心,CO的碳原子向内的吸附键最强。这一 结论与宏观实验测试的结果相一致,尽管宏观实验测试的结果在上述不同晶体表在 相近的CO脱附热。这种不同氧化锌晶体表面有相近的CO脱附热的现象是由于晶体表 面存在固有的晶体缺陷-表面层阶梯造成的。补偿方法,主要用于计算不同活化吸 附点的吸附质与吸附剂的弱作用。以Zn_4O_4为模型,以氧离子为活化吸附位,对 CO在氧化锌表面的计算结果表明,当CO分子垂直于晶体表面显排斥作用,当CO分子 平行于晶体表面仅有弱的吸附键。  相似文献   

15.
基于密度泛函理论, 采用广义梯度近似方法结合周期平板模型, 对Cu2O(111)非极性表面上CO和CH3O的吸附和共吸附进行了系统的研究. 计算了CO以4种吸附模式和CH3O以O端在Cu2O(111)表面上的吸附, 通过对不同吸附位置的吸附能、几何构型参数和Mulliken电荷的计算和比较发现, Cu2O(111)表面上配位未饱和铜离子(CuCUS)为CO的活性吸附位; 配位饱和铜离子(CuCSA)为CH3O的活性吸附位. CO和CH3O吸附于Cu2O(111)表面后, 表面弛豫现象明显改善. CO和CH3O与Cu2O(111)表面能够形成共吸附体系, CO和CH3O之间的相互作用力达到75.89 kJ/mol, 为典型的化学作用, 有助于促进CO和CH3O反应形成表面物种CH3OCO, 计算结果与实验事实一致.  相似文献   

16.
CO2在金属表面活化的UBI-QEP方法研究   总被引:1,自引:0,他引:1  
应用UBI-QEP方法估算了金属表面上形成的活化吸附态CO2-在Cu(111),Pd(111),Fe(111)和Ni(111)表面上的吸附热,计算了各种相关反应的活化能垒.结果表明,CO2-在4种过渡金属表面的相对稳定性的顺序为Fe>Ni>Cu>Pd;在Fe和Ni表面上CO2-较易生成,且容易进一步发生解离反应,在Fe表面会解离成C和O吸附原子,而在Ni表面上解离的最终产物为CO和O;在Cu表面上,CO2-虽较难形成,但其加氢反应的活化能比解离反应低,因此加氢反应是其进一步活化的有效模式;在Pd表面上,CO2-吸附态在能量上很不稳定,所以CO2在Pd表面上不容易活化.  相似文献   

17.
采用基于密度泛函理论的第一性原理方法和平板模型研究了CH3SH分子在Cu(111)表面的吸附反应.系统地计算了S原子在不同位置以不同方式吸附的一系列构型, 第一次得到未解离的CH3SH分子在Cu(111)表面顶位上的稳定吸附构型,该构型吸附属于弱的化学吸附, 吸附能为0.39 eV. 计算同时发现在热力学上解离结构比未解离结构更加稳定. 解离的CH3S吸附在桥位和中空位之间, 吸附能为0.75-0.77 eV. 计算分析了未解离吸附到解离吸附的两条反应路径, 最小能量路径的能垒为0.57 eV. 计算结果还表明S―H键断裂后的H原子并不是以H2分子的形式从表面解吸附而是以与表面成键的形式存在. 通过比较S原子在独立的CH3SH分子和吸附状态下的局域态密度, 发现S―H键断裂后S原子和表面的键合强于未断裂时S原子和表面的键合.  相似文献   

18.
吕存琴  凌开成  王贵昌 《催化学报》2009,30(12):1269-1275
 采用广义梯度近似 (GGA) 的密度泛函理论 (DFT) 并结合平板模型, 研究了 CH4 在清洁 Pd(111) 及 O 改性的 Pd(111) 表面发生 C朒 键断裂的反应历程. 优化了裂解过程中反应物、过渡态和产物的几何构型, 获得了反应路径上各物种的吸附能及反应的活化能. 结果表明, CH4 采用一个 H 原子指向表面的构型在 Pd(111) 表面的顶位吸附, CH3 的最稳定的吸附位置为顶位, OH, O 和 H 的最稳定吸附位置均为面心立方. CH4 在清洁 Pd(111) 表面裂解的活化能为 0.97 eV, 低于它在 O 原子改性 (O 没有参与反应) 的 Pd(111) 表面的活化能 1.42 eV, 说明表面氧原子抑制了 CH4 中 C朒 键的断裂. 当亚表面 O 原子和表面 O 原子 (O 参与反应) 共同存在时, C朒 键断裂的活化能为 0.72 eV, 低于只有表层氧存在时的活化能 (1.43 eV), 说明亚表面的 O 原子对 CH4 分子的活化具有促进作用. CH4 在 O 原子改性的 Pd(111) 表面裂解生成 CH3 和 H, 以及生成 CH3 和 OH 的反应活化能分别为 1.42 和 1.43 eV, 说明 CH4 在 O 原子改性的 Pd(111) 表面发生这两种反应的难易程度相当.  相似文献   

19.
通过密度泛函理论(DFT)计算研究了愈创木酚在Fe(211)表面上的吸附活化行为和加氢脱氧(HDO)反应性能.讨论了Pd的掺杂和H_2O~*的参与对Fe催化剂活性和选择性的影响.计算结果表明,通过苯环水平吸附在催化剂表面的愈创木酚的稳定性高于仅通过羟基的垂直吸附构型,这有利于苯环, C_(Ar)-OCH_3键和O-CH_3键的活化.在Fe(211)表面上,愈创木酚通过脱甲基再加氢生成邻苯二酚在动力学上比通过脱甲氧基生成苯酚和通过脱羟基生成苯甲醚更有利. Pd掺杂对愈创木酚的吸附稳定性影响较小(0.05 eV),但增加了其加氢脱氧反应的活化能垒,抑制了C_(Ar)-OCH_3, O-CH_3和C_(Ar)-OH键的断裂以及随后加氢生成苯酚,邻苯二酚和苯甲醚的反应过程.在Fe(211)表面上, H_2O~*通过与-CH_3形成氢键作用(H-bonding机理)对反应产生影响,从而降低了愈创木酚脱甲基和脱甲氧基反应的活化能垒.在Fe(211)-1Pd表面上, H_2O~*通过H转移参与反应(H-shuttling机理),促进了愈创木酚向邻苯二酚和苯酚产物的转化,并提高了加氢脱氧反应对苯酚的选择性.  相似文献   

20.
采用基于密度泛函理论的第一性原理方法和平板模型研究了CH3SH分子在Au(111)表面的吸附构型和电子结构. 系统地计算了S原子在不同位置以不同方式吸附的系列构型, 计算结果表明, CH3SH分子倾向于吸附在top位上, S-C键相对于Au表面法线的夹角为62°~78°|而S-H键断裂后CH3S_H则倾向于吸附在bri-fcc位上, S-C键相对于Au(111)表面法线的夹角为49°~57°. 比较分析CH3SH分子和CH3S_H的吸附, 发现CH3SH分子倾向于不解离吸附, 表面温度的提升和缺陷的出现可能促使S-H键的断裂. 通过比较S原子在独立的CH3SH分子和吸附状态下的局域态密度, 发现S-H键断裂后S原子和表面的键合强于S-H键未断裂时S原子和表面的键合. 扫描隧道显微镜(STM)图像模拟显示了CH3SH和CH3S_H在Au(111)表面吸附的3个典型的STM图像.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号